
Fuzzy weakest precondition and algorithm specification

Victoria L ópez1, Daniel Gómez2, Javier Montero1

1Dept. Estad́ıstica e I.O. I. Complutense University. Email{vlopez,javiermontero}@mat.ucm.es
2Dept. Estad́ıstica e I.O. III. . Complutense University. Email dagomez@estad.ucm.es

Abstract

Design and formal verification of algo-
rithms can be translated into a fuzzy
framework introducing fuzzy logic and
assert transformations. Following the
classical scheme, and in order to develop
codes with good behavior, this paper de-
fines the concepts of fuzzy algorithm
specification and fuzzy weakest precondi-
tion operator which are then applied to a
fuzzy decision making algorithm.

Keywords: Fuzzy algorithms and pro-
gramming, decision making.

1 Introduction

An algorithm is a precise, step-by-step method of
doing a task in a finite amount of time. In general,
an algorithm should be previously checked in order
to assure that such algorithm has been rightly de-
signed. This has to be done by means of a formal
specification [5], which refers to two different as-
pects:

• Precondition describing the situation before al-
gorithm execution (any assumption and the in-
formation the algorithm needs to meet its ob-
jectives).

• Postcondition describing the situation after al-
gorithm execution (any error condition and the
information returned by the algorithm).

Both pre and postcondition, are logic formulas. In
this paper we shall assume that precondition can
include fuzzy restrictions. A first study of the de-
sign of the associatedfuzzy algorithmhas been de-
veloped in [9], including the possibility of a fuzzy
postcondition (in particular, it was developed an it-
erative code for the algorithm, that can be verified
by means of mathematical induction and transfor-
mations of logic assertions, which set the relation-
ship between variables and values involved in the
program).

Verification processes should play a more important
role within the fuzzy context than within the crisp
context, since it may be the only available check-
ing tool for some decision making problems, when
the concepts ofsuccessandfail can not be properly
defined.

2 Algorithm specification

An algorithm can be formally described by its for-
mal specification, that means three parts: header (a
pseudocode program header associated), precondi-
tion and postcondition. All first logic formulas will
be between slice brackets in order to separate then
from sentences of code.

Definition 2.1 An algorithm is called ’fuzzy’ when
its specification admits fuzzy conditions.

An example of a crisp algorithm specification is
now given, followed by a fuzzy one.

Example 2.1 An array of n integers is called
’Blond’ if at least one of its component is odd. An

algorithm for deciding if a given array is ’Blond’
can be described by the following (crisp) specifica-
tion:

fun Blond (a: vector)ret b: boolean;
{PRE:n ≥ 0}
{POST:b = ∃i ∈ {1..n} : a[i]mod2 = 1}
where it is used the type

vector=array[1..n] of integer

Example 2.2 An array of integers is ’Blond’ if it
has at least one blond component. An integer is
’Blond’ if is ’near to 4’. The aim of the following
algorithm is to know how blond is the given array.
The algorithm can be described by its fuzzy specifi-
cation:

fun fBlond (a: vector;µ4: 01-function)
ret b: [0,1];

{fPRE:n ≥ 0}
{fPOST:b = maxi∈{1..n} µ4(a[i])}
whereµ4 given as an input is the fuzzy concept of
’near to 4’.

3 Top-down and bottom-up formal
correctness

An iterative algorithm consists of a sequence of k
instructions

I1; I2; . . . Ik;

Formal verification process must consider asser-
tions between each couple of instructions in order to
determine local pre and postconditions that describe
the configuration before and after instructions:

{ϕi−1}Ii; {ϕi}
Top-down formal correctnessconsiders the precon-
dition as the initial configuration, then compute next
configuration as the result of the execution of the
following instruction of code until the last one:

{PRE}I1; {ϕ1}I2; {ϕ2} . . . Ik{ϕk} ⇒ {POST}
After that, the last configuration{ϕk} must im-
ply the algorithm postcondition ({POST}) as it is
shown above.

Bottom-up formal correctnessworks in the opposite
way:

{PRE} ⇒ {ϕ0}I1; {ϕ1}I2; {ϕ2} . . . Ik{POST}

Bottom-up formal correctness starts in postcon-
dition and computes the precondition ofIk, de-
noted by{ϕk−1} and so on, until assertion{ϕ0}
is reached. After that, the algorithm precondition
({PRE}) must imply{ϕ0}.
Bottom-up formal correctness is the usual approach,
since Dijkstra [3] proved that there exists a suitable
operator for transforming logic assertions. This op-
erator is introduced in the following section.

4 The fuzzy weakest precondition
operator

The importance of formal specification and verifi-
cation in algorithm design has been already pointed
out by Dijkstra [3], who also introduced the weakest
precondition operator [4]. The first idea consists of
assigning a triple

(ϕ, I, φ)

to each instruction of codeI in a standard program-
ming language. Bothϕ and φ are assertions that
describe the situation before and after executing the
instruction I. Thenϕ is the precondition andφ is
the postcondition of the singleI. The local precon-
dition ϕ can be computed from instructionI and its
local postconditionφ.

Definition 4.1 Weakest precondition operator is a
function

wp : Assertions× Statements→ Assertions

whereAssertionsis the set of first order logic formu-
las; Statementsis the set of instructions in a stan-
dard programming language, usually denoted byI.
Weakest precondition allows to obtain the first order
formula

ϕ = wp(I, φ)

such that the sequence of code

{ϕ} I {φ}
is formally correct. That means if the configura-
tion holds the precondition then the postcondition
φ will be reached after executing instructionI, i.e.
if statementI is executed when configurationϕ is
held, then the configuration becameφ, that can also
be represented as

ϕ ◦ I = φ

If any other formulaϕ′ is such that

{ϕ′} I {φ}
is also formally correct then

ϕ′ ⇒ ϕ

In this sense,ϕ is the weakest.

Example 4.1 Let us consider the following se-
quence:

{x > 0}
if x ≥ 0 then s := 1
elses := −1
endif;
{x > 0 ∧ s = 1}

Precondition, if-instruction and postcondition here
are directly related. Nevertheless pre and postcon-
dition are not always so obvious.

It is normal to get the weakest precondition by
means of the inference rule [9] related to its own
statementI. The inference rule for assignment in-
struction establishes that

wp(x := Exp, {φ}) = {φExp
x }

being{φExp
x } the first order formula{φ} after re-

placing any instance of variablex with expression
Exp.

Example 4.2 Let us consider the following se-
quence:

{ϕ} x := x + 1; {φ ≡ (x = 2y + 1)}
the weakest precondition is:

{ϕ} ≡ {φx+1
x } ≡ {x + 1 = 2y + 1} ≡ {x = 2y}

Definition 4.2 LetI be a simple instruction of code
and letφ be a fuzzy first order logic formula. The
fuzzy weakest precondition

fwp(I, φ) = ϕ

for obtainingφ after executingI

fwp : fAssertions× Statements→ fAssertions

is another fuzzy assertionϕ obtained as the result
of applying the inference rule forI, in such a way
that ϕ is the weakest condition needed to satisfyφ
after runningI.

fAssetionsrefers to the set of fuzzy first order logic
formulas.

As a special case, the fuzzy weakest precondition

fwp(x := Exp, φ)

can be obtained by replacing inφ every itemx by
the expressionExp. Then, the sequence

{fwp(x := Exp, φ)} x := Exp; {φ}

is formally correct.

After that, the new assertionϕ must be simplified
using the fuzzy operators suitable for the specifical
algorithm. Some T-normT and a T-conormS must
be selected at the beginning, according to the objec-
tive and task [9].

Example 4.3 Given two groups of peopleX andY ,
let ϕ1, ϕ2, ϕ3 be the following fuzzy logic formulas:

• ϕ1(X) ≡ ’Most members inX are born in
Spain’

• ϕ2(Y) ≡ ’Most members inY are born in
France’

• ϕ3(X) ≡ ’About a half of members inX are
born in Spain’

Let us consider the following code:

{ϕ}
X := X ∪ Y ;
{φ} ≡ {ϕ2(Y) ∧f ϕ3(X) ∧f |X| = 2|Y |}

where∧f is a fuzzy operator for∧ (Min, for in-
stance). The fuzzy weakest precondition solves the
equation by substitution:

ϕ = fwp(X := X ∪ Y ; φ)

= ϕ2(Y) ∧f ϕ3(X ∪ Y) ∧f |X ∪ Y | = |Y |
= ϕ2(Y) ∧f ϕ1(X) ∧f |X| = |Y |

And the solution is a new fuzzy logic assertion, ac-
cording to the set of assumptions relative to fuzzy
operators and fuzzy relations values forϕ1, ϕ2, ϕ3.
So, fuzzy weakest precondition will be the aggrega-
tion of the above assertions, that can be interpreted
as ’X and Y have about the same number of mem-
bers, most members in X are born in Spain and most
members in Y are born in France’.

5 Application to a fuzzy decision
making algorithm

Classification processes [1, 2] are usually imple-
mented by means of algorithms based on the pro-
cess itself.

An algorithm which solves a classification prob-
lem is usually evaluated according to the associated
classification process. If the process is good, we
consider that the algorithm associated is also good.
Nevertheless, good behavior of the algorithm is only
guaranteed by a formal verification of the code line
by line. This is the only way of assuring that post-
condition is going to be reached from a precondi-
tion, i.e., the formal specification of the process.

Our problem is how to decide if a classification of
the set of pixels in a digital image, for instance, is
good or not (crisp case), or if it is good enough or
not (fuzzy case) [7].

In order to design a good algorithm that make a
decision about a classification [8], a formal spec-
ification is due. A non-formal specification can in-
clude the header, precondition and postcondition ex-
pressed in natural language:

proc C&Decide (in im: Timage;
out imc:Tlist of Timage;out k: int);

{fPRE:im has all the properties of a image}

{fPOST:imc is a list of matrix that represents
the result of a good or good
enough classification
of the set of pixels inim.
Variablek returns the length ofimc}

The next table shows the formal header and the
pseudo-code we propose in order to solve the prob-
lem.

proc C&Decide (in im: Timage;
in αint : [0, 1];
out imc:Tlista of Timage;
out k, k0: int ;
out αres: [0,1]);

{fPREC&Decide}
CrispC(im,imc,k);
k0 := k;
Decide(im, imc, k, nk, ok,αres);
while ¬ok do

FuzzyC(im, nk, imc, k);
Decide(im, imc, k, αint, nk, ok, αres);

endwhile;
{fPOSTC&Decide}
endproc;

Firstly, the algorithm develops a crisp classification
of the set of pixels by means of an internal process
called CrispC. After that, the algorithm calls to
Decide in order to know if our expert (the ’internal
expert’) considers ’good enough’ the last classifi-
cation. If her/his answer,ok, is not ’True’, a loop
starts running two subprocess: a call toFuzzyC
for getting a new fuzzy classification and a new call
to Decide again, to know the expert opinion about.
The loop iterates until getting her/his approval.

Precondition in this procedure demands properties
about the digital image. In this paper we assume
the image is a RGB one, and it is represented by a
matrix of pixels (see [1, 2]).

{fPREC&Decide :
Image(im) ≡
∀(i, j) ∈ {1..n} × {1..m} : im[i, j] ∈ {0..255}3}
∧(0 ≤ αint ≤ 1)}

Notice that, in this case, precondition is a crisp one.

Postcondition gives a definition ofimc as a fuzzy
classification of the input. In this sense, we can
make the following first order fuzzy formula:

{fPOSTC&Decide :
[CrispC(imc, im) ∨f FuzzyC(imc, im)]
∧f (V alueint(imc, im) º αint)
∧f (k = lenth(imc))}

Since fuzzy logic generalizes the traditional logic,
this formula will be valid or true enough when the
loop is not going to be done (crisp classification)
and when the loop is going to be done (fuzzy clas-
sification).

The clause,k = lenth(imc), is a crisp one so that
we avoid a fuzzy final number of classes. However,
the clause(V alueint(imc, im) º αint) refers to
a degree of validity of the final classificationimc
for the imageim, which is compared toαint that
represents a goodness degree given as input. Since
this comparation can be a preference relation, the
result will be a real value between 0 and 1.

The loop stops depending on the internal expert de-
cision, who must agree after a reasonable number of
iterations. Moreover, we can also develop an alter-
native algorithm including some bound for the num-
ber of iterations, in such a way is assured the end of
the loop.

All of these considerations must conform an ex-
haustive analysis of the design without forgetting
the aim of correctness. Each family of fuzzy op-
erators∧f and∨f force a particular fuzzy seman-
tics, and results will be extremely dependent on this
election. Therefore, choosing them is a key issue,
and some learning procedure will be needed in order
to clarify specification true values and other desired
properties, to be taken into account in each specific
problem.

6 Final remarks

Algorithm correctness or algorithm verification ap-
pears as an absolute need when specifications con-
tains fuzzy relations in any software project, where
a good design will improve programs and regular
output testing does not represent a guarantee for the
right behavior of the program. This is specially the
case when a fuzzy precondition appears. Imple-
mentation of fuzzy algorithms requires much more
effort in developing verification techniques, some

times the only reliable tool in order to check deci-
sion processes in a fuzzy framework.

Referencias

[1] A. Amo, J. Montero, A. Ferńandez, M.
López, J. Tordesillas and G. Biging, ”Spec-
tral fuzzy classification: an application”.IEEE
Trans.Syst.Man.Cyb.(C) 32, 42-48, 2002

[2] A.Amo, D. Gómez, J. Montero, ”Spectral
fuzzy classification: a supervised approach”.
Mathware and Soft Computing10:141-154,
2003

[3] E.W. Dijkstra, ”A discipline of Program-
ming”. Prentice Hall, 1976.

[4] E.W. Dijkstra, W.H.J. Feijen, ”A method of
programming”.Addison-Wesley, 1988.

[5] H.K. Berg, ”Formal Methods of Program Ver-
ification and Specification”. Prentice Hall,
New Jersey, 1982.

[6] M. Broy y B. Krieg, ”Derivation Of Invariant
Assertions During Program Development by
Transformation”.ACM Transactions on Pro-
gramming Languages and Systems, Vol. 2, N
3, 321–327 1980.

[7] V. López y L. Mart́ın, ”Coloreado de grafos
difusos: Verificacíon formal y comprobación
prctica con MAPLE”, Proceedings ESTYLF
conferenceJaen, Spain, September 15-17,
2004, pages 545-550.

[8] V. López, J. Montero y D. Ǵomez, ”Verifi-
cacíon de algoritmos de clasificación con pre-
condicíon difusa”,Proceedings ESTYLF con-
ference Jaen, Spain, September 15-17, 2004,
pages 437-442.

[9] V. López, ”Disẽno y verificacíon de algoritmos
para el tratamiento difuso de imágenes digi-
tales en teledetección y seguridad”.Ph.D. The-
sis Politechnic University of Madrid, Spain,
2004 (in Spanish).

