Publication:
Understanding complex dynamics by means of an associated Riemann surface

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2012-08-15
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We provide an example of how the complex dynamics of a recently introduced model can be understood via a detailed analysis of its associated Riemann surface. Thanks to this geometric description an explicit formula for the period of the orbits can be derived, which is shown to depend on the initial data and the continued fraction expansion of a simple ratio of the coupling constants of the problem. For rational values of this ratio and generic values of the initial data, all orbits are periodic and the system is isochronous. For irrational values of the ratio, there exist periodic and quasi-periodic orbits for different initial data. Moreover, the dependence of the period on the initial data shows a rich behavior and initial data can always be found with arbitrarily large periods.
Description
© 2012 Elsevier B.V. All rights reserved. It is a pleasure to acknowledge illuminating discussions with Carl Bender, Boris Dubrovin, Yuri Fedorov, Jean-Pierre Fran¸coise, Peter Grinevich and Fran¸cois eyvraz. The research of DGU was supported in part by MICINN-FEDER grant MTM2009-06973 and CUR-DIUE grant 2009SGR859 and he would like to thank the financial support received from the Universita di Roma “La Sapienza” under the Accordo Bilaterale with Universidad Complutense de Madrid.
Unesco subjects
Keywords
Citation
[1] P. Painlevé. Mémoire sue les équations différentielles du premier ordre, Annales Scientifiques de l’ENS 8: 9-58 (1891). [2] S. Kowalewskaya. Sur une propriété du système d’équations différentielles qui définit la rotation d’un corps solide autour d’un point fixe, Acta Mathematica 14:81-93 (1890). [3] A. Ramani, B. Grammaticos and T. Bountis. The Painlevé property and singularity analysis of integrable and nonintegrable systems, Phys. Rep. 180: 159-245 (1989). [4] D. Balwin and W. Hereman. Symbolic software for the Painlev´e test of nonlinear ordinary and partial differential equations, J. Nonlin. Math. Phys. 13: 90-110 (2006). [5] T. Bountis, H. Segur and F. Vivaldi. Integrable Hamiltonian systems and the Painlevé property, Phys. Rev. A 25: 1257-1264 (1982). [6] Y. F. Chang, M. Tabor, and J. Weiss. Analytic structure of the Hénon-Heiles Hamiltonian in integrable and nonintegrable regimes, J. Math. Phys. 23: 531-538 (1982). [7] M. D. Kruskal and P. A. Clarkson. The Painlevé-Kowalewski and poly-Painlevé tests for integrability, Studies Appl. Math. 86: 87-165 (1992). [8] M. D. Kruskal, A. Ramani and B. Grammaticos. Singularity analysis and its relation to complete, partial and nonintegrability, in Partially integrable evolution equations in physics (Les Houches, 1989), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 310: 321-372, Kluwer Acad. Publ., Dordrecht, 1990. [9] M. Tabor and J. Weiss. Analytic structure of the Lorenz system, Phys. Rev. A 24: 2157-2167 (1981). [10] Y. F. Chang, J. M. Greene, M. Tabor and J. Weiss. The analytic structure of dynamical systems and self-similar natural boundaries, Physica D 8: 183-207 (1983). [11] G. Levine and M. Tabor. Integrating the nonintegrable: analytic structure of the Lorenz system revisited, Physica D 33: 189-210 (1988). [12] M. Tabor. Chaos and integrability in nonlinear dynamics: An introduction, Wiley-Interscience, New York, 1989. [13] Y. F. Chang and G. Corliss. Ratio-like and recurrence relation tests for convergence of series, J. Inst. Math. Appl. 25: 349-359 (1980). [14] T. Bountis. Investigating non-integrability and chaos in complex time, Physica D 86: 256- 267 (1995). [15] T. Bountis, L. Drossos and I. C. Percival. Nonintegrable systems with algebraic singularities in complex time, J. Phys. A 24: 3217-3236 (1991). [16] A. S. Fokas and T. Bountis. Order and the ubiquitous occurrence of chaos, Physica A 228: 236-244 (1996). [17] A. G. Anderson, C. M. Bender and U. I. Morone. Periodic orbits for classical particles having complex energy, arXiv:1102.4822v1 (2001). [18] C. M. Bender, D. D. Holm and D. W. Hook. Complex trajectories of a simple pendulum, J. Phys. A 40: F81-F89 (2007). [19] C. M. Bender, D. W. Hook, P. N. Meisinger and Q. H. Wang. Probability density in the complex plane, Ann. Physics 325: 2332-2362 (2010). [20] C. M. Bender, D. W. Hook and K. S. Kooner. Classical particle in a complex elliptic potential, J. Phys. A 43: 165201 (2010). [21] C. M. Bender, J. Feinberg, D. W. Hook and D. J. Weir. Chaotic systems in complex phase space, Pramana J. Phys. 73: 453-470 (2009). [22] F. Calogero, D. Gomez-Ullate, P. M. Santini and M. Sommacal. On the transition from regular to irregular motions, explained as travel on Riemann surfaces, J. Phys. A 38: 8873-8896 (2005). [23] F. Calogero, D. Gómez-Ullate, P. M. Santini and M. Sommacal. Towards a theory of chaos explained as travel on Riemann surfaces, J. Phys. A 42: 015205 (2009). [24] F. Calogero. A class of integrable Hamiltonian systems whose solutions are (perhaps) all completely periodic, J. Math. Phys. 38: 5711-5719 (1997). [25] F. Calogero. Classical many-body problems amenable to exact treatments, Lecture Notes in Physics Monograph m 66, Springer, Berlin, 2001. [26] F. Calogero. Isochronous systems, Oxford University Press, Oxford, 2008. [27] F. Calogero and M. Sommacal. Periodic solutions of a system of complex ODEs. II. Higher periods, J. Nonlin. Math. Phys. 9: 1-33 (2002). [28] F. Calogero and J.-P. Fran¸coise. Periodic motions galore: how to modify nonlinear evolution equations so that they feature a lot of periodic solutions, J. Nonlin. Math. Phys. 9: 99-125 (2002). [29] F. Calogero, J.-P. Françoise and M. Sommacal. Periodic solutions of a many-rotator problem in the plane. II. Analysis of various motions, J. Nonlin. Math. Phys. 10: 157-214 (2003). [30] D. Gómez-Ullate and M. Sommacal. Periods of the Goldfish many-body problem, J. Nonlin. Math. Phys. 12: 351-362 (2005). [31] Yu. Fedorov and D. Gómez-Ullate. A class of dynamical systems whose solutions travel on the Riemann surface of an hyperelliptic function, Physica D 227: 120-134 (2007). [32] P. Grinevich and P. M. Santini. Newtonian dynamics in the plane corresponding to straight and cyclic motions on the hyperelliptic curve µ _2 = v^ n − 1, n ∈ Z: ergodicity, isochrony, periodicity and fractals, Physica D 232: 22–32 (2007). [33] M. Sommacal. The transition from regular to irregular motions, explained as travel on Riemann surfaces, PhD Thesis, SISSA-ISAS, Trieste, 2005.
Collections