Publication:
An extended class of orthogonal polynomials defined by a Sturm-Liouville problem

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2009-11-01
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We present two infinite sequences of polynomial eigenfunctions of a Sturm-Liouville problem. As opposed to the classical orthogonal polynomial systems, these sequences start with a polynomial of degree one. We denote these polynomials as X(1)-Jacobi and X(1)-Laguerre and we prove that they are orthogonal with respect to a positive definite inner product defined over the compact interval [-1, 1] or the half-line [0, infinity), respectively, and they are a basis of the corresponding L(2) Hilbert spaces. Moreover, we prove a converse statement similar to Bochner's theorem for the classical orthogonal polynomial systems: if a self-adjoint second-order operator has a complete set of polynomial eigenfunctions {p(i)}(i=1)(infinity), then it must be either the X(1)-Jacobi or the X(1)-Laguerre Sturm-Liouville problem. A Rodrigues-type formula can be derived for both of the X(1) polynomial sequences.
Description
© 2009 Elsevier Inc. All rights reserved. We are grateful to Jorge Arvesú, Mourad Ismail, Francisco Marcellán and André Ronveaux for their helpful comments. A special note of thanks goes to Norrie Everitt for his suggestions and remarks regarding operator domains and the limit point/circle analysis, and to Lance Littlejohn for comments regarding classical polynomials with negative integer parameters. The research of DGU is supported in part by the Ramón y Cajal program of the Spanish ministry of Science and Technology and by the DGI under grants MTM2006-00478 and MTM2006-14603. The research of NK is supported in part by NSERC grant RGPIN 105490-2004. The research of RM is supported in part by NSERC grant RGPIN-228057-2004.
Unesco subjects
Keywords
Citation
[1] J. Aczel, Eine Bemerkung über die Charakterisierung der klassichen orthogonale Polynome, Acta Math. Acad.Sci. Hungar 4 (1953), 315-321. [2] M. Alfaro, M. Álvarez de Morales, M. L. Rezola, Orthogonality of the Jacobi polynomials with negative integer parameters, Journal of Computational and Applied Mathematics, 145 (2002) 379–386. [3] R.A. Askey and J.A. Wilson, Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Memoirs American Mathematical Society No. 319 (1985). [4] F.V. Atkinson and W.N. Everitt, Orthogonal polynomials which satisfy second order differential equations. E. B. Christoffel (Aachen/Monschau, 1979), pp. 173–181, Birkhuser, Basel-Boston, Mass., 1981. [5] S. Bochner, Über Strum-Liouvillsche Polynomsysteme, Math. Z. 29 (1929), 730-736. [6] W. N. Everitt, L. L. Littlejohn, R. Wellman, The Sobolev orthogonality and spectral analysis of the Laguerre polynomials L −k n for positive integers k, J. Comput. Appl. Math. 171 (2004), 199–234. [7] W. N. Everitt, Note on the X1-Jacobi orthogonal polynomials, arXiV CA 0812.0728 and Note on the X1-Laguerre orthogonal polynomials, arXiV CA 0812.3559 [8] W. N. Everitt, K. H. Kwon, L. L. Littlejohn and R. Wellman, Orthogonal polynomial solutions of linear ordinary differential equations, J. Comp. Appl. Math 133 (2001), 85109. [9] J. Feldmann, On a characterization of classical orthogonal polynomials, Acta. Sc. Math. 17 (1956), 129133. [10] D. Gómez-Ullate, N. Kamran, and R. Milson, An extension of Bochner’s problem: exceptional invariant subspaces arXiV math-ph 0805.3376 [11] A. Grünbaum and L. Haine, The q-version of a theorem of Bochner, J. Comput. Appl. Math. 68 (1996), 103–114. [12] E. Heine, Theorie der Kugelfunctionen und der verwandten Functionen, Berlin, 1878. [13] E. Hendriksen and H. van Rossum, Semiclassical orthogonal polynomials, in “Orthogonal polynomials and applications” (Bar-le-Duc, 1984), 354–361, Lecture Notes in Math., 1171, Springer, Berlin, 1985. [14] M.E.H. Ismail , A generalization of a theorem of Bochner, J. Comp. Appl. Math. 159 (2003), 319–324. [15] M.E.H. Ismail and W. van Assche, Classical and quantum orthogonal polynomials in one variable, Encyclopedia in Mathematics, Cambridge University Press, Cambridge, 2005. [16] H. L. Krall, On orthogonal polynomials satisfying a certain fourth order differential equation, The Pennsylvania State College Studies, No 6, 1940. [17] K. H. Kwon and L. L. Littlejohn, Classification of classical orthogonal polynomials, J. Korean Math. Soc. 34 (1997), 973–1008. [18] P. Lesky, Die Charakterisierung der klassischen orthogonalen Polynome durch SturmLiouvillesche Differentialgleichungen, Arch. Rat. Mech. Anal. 10 (1962), 341–352. [19] M. Mikolás, Common characterization of the Jacobi, Laguerre and Hermitelike polynomials(in Hungarian), Mate. Lapok 7 (1956), 238–248. [20] C. Quesne, Exceptional orthogonal polynomials, exactly solvable potentials and supersymmetry, J. Phys. A: Math. Theor. 41 No. 39, 392001. [21] E.J. Routh, On some properties of certain solutions of a differential equation of the second order, Proc. London Math. Soc., 16 (1885), 245-261. [22] M. Reed and B. Simon, Methods of Modern Mathematical Physics. II. Fourier Analysis, Self-Adjointness, Academic Press, New York-London, 1975. [23] A. Ronveaux, Sur l’équation différentielle du second ordre satisfaite par une classe de polynômes orthogonaux semi-classiques, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), no. 5, 163–166. [24] A. Ronveaux, Polynômes orthogonaux dont les polynômes dérivés sont quasi orthogonaux, C. R. Acad. Sci. Paris S´er. A-B 289 (1979), no. 7, A433–A436. [25] A. Ronveaux and F. Marcell´an, Differential equation for classical-type orthogonal polynomials, Canad. Math. Bull. 32 (1989), no. 4, 404–411. [26] T.J. Stieltjes, Sur certains polynômes qui vérifient une équation différentielle du second ordre et sur la théorie des fonctions de Lam´e, Acta Mathematica 6 (1885), 321-326. [27] G. Szegö, Orthogonal polynomials, Colloquium Publications 23, American Mathematical Society, Providence, 1939. [28] V. B. Uvarov, The connection between systems of polynomials that are orthogonal with respect to different distribution functions, USSR Computat. Math. and Math. Phys. 9 (1969), 25–36.
Collections