Publication:
Soft interactions in jet quenching

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2015-05-10
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
World Scientific Publishing
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We study the collisional aspects of jet quenching in a high-energy nuclear collision, especially in the final state pion gas. The jet has a large energy, and acquires momentum transverse to its axis more effectively by multiple soft collisions than by few hard scatterings (as known from analogous systems such as J/ψ production at Hera). Such regime of large E and small momentum transfer corresponds to Regge kinematics and is characteristically dominated by the pomeron. From this insight we estimate the jet quenching parameter in the hadron medium (largely a pion gas) at the end of the collision, which is naturally small and increases with temperature in line with the gas density and compare it to the jet quenching parameter obtained within the quark-gluon plasma (QGP) phase in widely known perturbative approximations. The physics in the quark-gluon plasma/liquid phase is less obvious, and here we revisit a couple of simple estimates that suggest indeed that the pomeron-mediated interactions are very relevant and should be included in analysis of the jet quenching parameter. Finally, since the occasional hard collisions produce features characteristic of a Lèvy flight in the q^2_⊥ plane perpendicular to the jet axis, we suggest one- and two-particle q_⊥ to correlations as interesting experimental probes sensitive to the nature (softness versus hardness) of the interactions of a jet inside the QGP.
Description
© 2015 World Scientific Publishing. We thank J. Liao from Indiana University for pointing to us that the literature lacks assessments of ^q in the hadronic phase, which this work attempts to supply, and for reading the first manuscript, as well as M. Benzke, N. Brambilla, A. Gomez Nicola, A. Sabio-Vera and J. Torres-Rincon for useful comments and references. Financial support by Spanish Grants FPA2011-27853-C02-01 and FIS2011-28853-C02-02. C. Hidalgo-Duque thanks the support of the JAE-CSIC Program.
Unesco subjects
Keywords
Citation
[1] J. D. Bjorken, “Energy loss of energetic partons in Quark-Gluon plasma: Possible extinction of High PT jets in Hadron-Hadron collisions”, unpublished Fermilab preprint, FERMILAB-Pub-82/59-THY, August 1982. [2] M. Gyulassy, M. Plumer, Phys. Lett. B 243 (1990) 432. [3] M. H. Thoma, M. Gyulassy, Nucl. Phys. B 351 (1991) 491. [4] E. Braaten, M. H. Thoma, Phys. Rev. D 44 (1991) 2625. [5] R. Baier et al. Nucl. Phys. B 484 (1997) 265; R. Baier et al. Nucl. Phys. B 483 (1997) 291; see recently M. Bluhm et al. Acta Phys. Polon. Supp. 5 (2012) 1063. [6] T. Renk, arXiv:1309.3059 [hep-ph]. [7] S. Domdey, B. Z. Kopeliovich and H. J. Pirner, Nucl. Phys. A 856 (2011) 134. [8] N. Armesto, L. Cunqueiro and C. A. Salgado, arXiv:0906.0754 [hep-ph]. [9] CMS collaboration, Physics Letters B 712 (2012) 176197. [10] A. Adare et al. [PHENIX Collaboration], Phys. Rev. C 77 (2008) 064907. [11] A. Dainese, C. Loizides and G. Paic, Eur. Phys. J. C 38 (2005) 461. [12] K. M. Burke, A. Buzzatti, N. Chang, C. Gale, M. Gyulassy, U. Heinz, S. Jeon and A. Majumder et al., Phys. Rev. C 90, 014909 (2014). [13] F. D. Aaron et al. [H1 Collaboration], Eur. Phys. J. C 68 (2010) 401. [14] M. Prakash et al. Phys. Rept. 227 (1993) 321. [15] L. M. Abreu, D. Cabrera and J. M. Torres-Rincon, Phys. Rev. D 87 (2013) 3, 034019. [16] J. M. Torres-Rincon, dissertation presented to Universidad Complutense de Madrid, “Hadronic Transport Coe_cients from E_ective Field Theories,” arXiv:1205.0782 [hep-ph]. [17] L. M. Abreu et al. Annals Phys. 326 (2011) 2737. [18] A. Dobado, F. J. Llanes-Estrada and J. M. Torres-Rincon, Phys. Lett. B 702 (2011) 43. [19] A. Dobado and F. J. Llanes-Estrada, Phys. Rev. D 69 (2004) 116004. [20] D. Fernandez-Fraile and A. Gómez Nicola, Phys. Rev. D 73 (2006) 045025. [21] D. Fernandez-Fraile and A. Gómez Nicola, Phys. Rev. Lett. 102 (2009) 121601. [22] U. Habel, et al. Z. Phys. A 336, 435 (1990). [23] A. V. Friesen, Yu. V. Kalinovsky and V. D. Toneev, arXiv:1304.7150 [hep-ph]. [24] V. A. Okorokov, arXiv:0907.0951 [hep-ph]. [25] G. A. Schuler and T. Sjostrand, Phys. Rev. D 49, 2257 (1994). [26] CERN yellow reports: proceedings of the 1972 CERN summer school, page 325. [27] L. Tolos and J. M. Torres-Rincon, arXiv:1306.5426 [hep-ph]. [28] J. Stachel, A. Andronic, P. Braun-Munzinger and K. Redlich, J. Phys. Conf. Ser. 509, 012019 (2014) [arXiv:1311.4662 [nuclth]]. [29] S. K. Prasad [ALICE Collaboration], J. Phys. Conf. Ser. 389 (2012) 012005. [30] Review of Particle Physics, J. Beringer et al., Phys. Rev. D 86010001, (2012). [31] P. V. Landsho_, J. C. Polkinghorne and R. D. Short, Nucl. Phys. B 28 (1971) 225. [32] Yu. A. Simonov, Phys. Lett. B 249 (1990) 514; F. J. Llanes-Estrada et al. Nucl. Phys. A 710 (2002) 45. [33] R. L. Delgado, C. Hidalgo-Duque and F. J. Llanes-Estrada, Few Body Systems 54 (2013) 1705-1717. [34] X. -N. Wang, Phys. Lett. B 579 (2004) 299. [35] P. B. Arnold and W. Xiao, Phys. Rev. D 78 (2008) 125008. [36] J. Braun and H. -J. Pirner, Phys. Rev. D 75, 054031 (2007). [37] S. Caron-Huot, Phys. Rev. D 79 (2009) 065039. [38] M. Panero, K. Rummukainen and A. Schfer, Nucl. Phys. A (2014); ibid. Phys. Rev. Lett. 112, 162001 (2014). [39] B. B. Brandt, A. Francis, M. Laine and H. B. Meyer, arXiv:1408.5917 [hep-lat]. [40] I. P. Ivanov, N. N. Nikolaev and A. A. Savin, Phys. Part. Nucl. 37 (2006) 1. [41] S. Donnachie et al. Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 19 (2002) 1; J. R. Forshaw and D. A. Ross, Cambridge Lect. Notes Phys. 9 (1997) 1. [42] C. Manuel and S. Mrowczynski, Phys. Rev. D 70 (2004) 094019. [43] J. R. Peláez and F. J. Yndurain, Phys. Rev. D 69 (2004) 114001. [44] U. D’Alesio, A. Metz and H. J. Pirner, Eur. Phys. J. C 9 (1999) 601. [45] A. H. Mueller and W. -K. Tang, Phys. Lett. B 284, 123 (1992). [46] V. Barone and E. Predazzi, “High-Energy Particle Di_raction”, Springer-Verlag Berlin-Heidelberg 2002, pg. 205. [47] N. Kidonakis, and J. F. Owens, Phys. Rev. D 63 (2001) 054019. [48] J. P. Bouchaud and A. Georges, Phys. Rep. 195 (1990) 127293. [49] F. D’Eramo, H. Liu and K. Rajagopal, Phys. Rev. D 84 (2011) 065015. [50] N. Armesto et al., Phys. Rev. C 86 (2012) 064904. [51] X. -F. Chen et al. Phys. Rev. C 81 (2010) 064908. [52] W. -t. Deng and X. -N. Wang, Phys. Rev. C 81 (2010) 024902. [53] J. Casalderrey-Solana, J. G. Milhano and U. A. Wiedemann, J. Phys. G 38 (2011) 035006. [54] K. C. Zapp, F. Krauss and U. A.Wiedemann, JHEP 1303 (2013) 080. [55] M. Mannarelli et al. Phys. Rev. D 81 (2010) 074036. [56] H. J. de Vega and L. N. Lipatov, Phys. Lett. B 578 (2004) 335. [57] D. S. Henty et al. [UKQCD Collaboration], Phys. Lett. B 369 (1996) 130. [58] C. Parrinello [UKQCD Collaboration], Nucl. Phys. Proc. Suppl. 53 (1997) 331. [59] Z. -t. Liang, X. -N. Wang and J. Zhou, Phys. Rev. D 77 (2008) 125010. [60] M. Benzke et al. JHEP 1302 (2013) 129. [61] I. O. Cherednikov, J. Lauwers and P. Taels, arXiv:1307.5518 [hep-ph]. [62] V. Del Duca, hep-ph/9503226; DESY 95-023 (1995). [63] A. Idilbi and A. Majumder, Phys. Rev. D 80 (2009) 054022. [64] G. Ovanesyan and I. Vitev, JHEP 1106 (2011) 080. [65] G. Ovanesyan and I. Vitev, Phys. Lett. B 706 (2012) 371. [66] C.W. Bauer, B. O. Lange and G. Ovanesyan, JHEP 1107 (2011) 077. [67] J. F. Donoghue and D. Wyler, Phys. Rev. D 81 (2010) 114023. [68] M. Spousta, Mod. Phys. Lett. A 28 (2013) 1330017; A. Andronic, AIP Conf. Proc. 1498 (2002) 125. [69] J. Liao and E. Shuryak, Phys. Rev. Lett. 102 (2009) 202302. [70] X. Zhang and J. Liao, arXiv:1208.6361; ibid. Phys. Rev. C 87 (2013) 044910.
Collections