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C. González-Santander and F Domı́nguez-Adame

GISC. Departamento de F́ısica de Materiales, Universidad Complutense, E-28040

Madrid, Spain

C. H. Fuentevilla and E. Diez

Laboratorio de Bajas Temperaturas, Universidad de Salamanca, E-37008 Salamanca,
Spain

Abstract

We study the scattering of massless Dirac particles by oscillating barriers
in one dimension. Using the Floquet theory, we find the exact scattering
amplitudes for time-harmonic barriers of arbitrary shape. In all cases the
scattering amplitudes are found to be independent of the energy of the in-
coming particle and the transmission coefficient is unity. This is a manifes-
tation of the Klein tunneling in time-harmonic potentials. Remarkably, the
transmission amplitudes for arbitrary sharply-peaked potentials also become
independent of the driving frequency. Conditions for which barriers of finite
width can be replaced by sharply-peaked potentials are discussed.
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1. Introduction

Shortly after Dirac formulated his celebrated equation for relativistic elec-
trons [1, 2], Klein discovered that Dirac particles undergo anomalous tunnel-
ing at high potential barriers [3] (see Ref. [4] for a review). The classical
example used to discuss the Klein tunneling is the potential step. When the
potential exceeds the rest mass energy, low-energy electrons falling onto the
potential step are always transmitted. As a consequence, a strong electro-
static barrier is not able to confine electrons to one side of it [5]. As pointed
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out by Sauter, this effect is quite independent of the potential profile and
eventually depends only on its strength [6]. However, due to the unrealizable
high potentials required, Klein tunneling was regarded as a curiosity in the
context of relativistic quantum mechanics.

With the development of experimental methods to isolate graphene [7]
came a renewed interest in Klein tunneling [8, 9, 10]. The reason for this
interest is that electrons close to the Fermi energy can be described by the
Dirac Hamiltonian for massless particles [11]. In this material Klein tunneling
manifests itself as the occurrence of perfect transparency of barriers at normal
incidence, as predicted by Katsnelson et al. [12, 13] and later observed in
experiments [14, 15].

In this work we consider a massless Dirac particle moving in 1 + 1 di-
mensions scattered by a time-dependent potential barrier. Using the Floquet
theory we find the exact transmission amplitudes when the barrier is an arbi-
trary sharply-peaked function at the origin x = 0, approaching the δ-function
limit. We also study the transmission properties of massless Dirac electrons
impinging on time-harmonic barriers of finite width and arbitrary shape, and
the exact scattering amplitudes will be compared to those corresponding to a
sharply-peaked function. The comparison will allow us to establish the con-
ditions under which a finite-width barrier can be replaced by its δ-function
limit. We conclude that the δ-function potential is a good approximation
to more complex time-dependent barriers whose width is smaller than any
other relevant length scale of the problem.

2. Time-harmonic sharply peaked barrier

In this section we study the scattering of massless Dirac particles by a
time-dependent potential barrier of the form V (x, t) = g(t)F (x). The spatial
part of the potential F (x) is assumed to be sharply peaked at the origin
x = 0, approaching the δ-function limit. Importantly, care must be taken
when dealing with δ-function potentials in the Dirac equation [5, 16, 17]. The
resulting equation is ambiguous if one takes the limit F (x)→ δ(x) from the
outset. The origin of the ambiguity is the following. Since the Dirac equation
is linear in momentum, the wave function itself must be discontinuous at
x = 0 to account for the singular δ-function potential. However, the product
of a discontinuous function and the δ-function is mathematically ill defined.
This ambiguity can be overcome by solving the corresponding Dirac equation
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for any arbitrary sharply peaked function and then taking the δ-function limit

with the constraint
∫ 0+

0−
F (x) dx = 1 [5].

To obtain the proper boundary condition at the origin, we start with the
1 + 1 massless Dirac equation

iψ̇(x, t) =

[
−iσx

∂

∂x
+ V (x, t)

]
ψ(x, t) , (1)

with V (x, t) = g(t)F (x). The dot indicates the derivative with respect to
time and the Pauli matrix σx acts on the two-component wave function
ψ(x, t). We take units where the speed of light and ~ are equal to unity.
The appropriate boundary condition for a time-independent sharply-peaked
potential was obtained by McKellar and Stephenson in Ref. [5] We now gen-
eralize this approach for the time-dependent potential at hand. To this end
we cast (1) in the form

∂

∂x
ψ(x, t) = Ĝ(x, t)ψ(x, t) , (2a)

where

Ĝ(x, t) = −σx
[
∂

∂t
+ ig(t)F (x)

]
. (2b)

Equation (2a) is solved by a Neumann solution

ψ(x, t) = P̂ exp

[∫ x

x0

dx′Ĝ(x′, t)

]
ψ(x0, t) , (3)

where P̂ is the spatial ordering operator. Taking the limits x → 0+ and
x0 → 0−, only the second term of the operator Ĝ, namely −iσxg(t)F (x),
contributes to the integral. This dominant term in the exponential commutes
at spatially separated points, so we may set P̂ = 1. Recalling the constraint∫ 0+

0−
F (x) dx = 1 we finally arrive at the following boundary condition

ψ(0−, t) = exp
[
ig(t)σx

]
ψ(0+, t) . (4)

In the absence of the potential term (V (x, t) = 0), solutions of the mass-
less Dirac equation (1) can be written as

ψ±(x, t) = φ±e
iE(±x−t) , φ± =

1√
2

(
1
±1

)
. (5)
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Notice that φ± are eigenvectors of σx since σxφ± = ±φ±. Free solutions are
then found to be plane waves travelling to the left or to the right, as deduced
from the corresponding current density j± = ψ†±σxψ± = ±1.

We now turn to our main goal, the study of the effects of the oscillating
barrier on the particle tunneling. The time dependence of the potential will
be taken as g(t) = g0 + g1 cosωt hereafter. As in the case of the Schrödinger
equation for an oscillating δ-function potential [18], the Floquet theory allows
us to write the wave function in terms of the free solutions (5) as follows

ψ(x, t) =
∞∑

n=−∞

An(x)e−iEnt , x 6= 0 , (6a)

where En = E+nω, E is a quasi-energy and n is the sideband channel index.
Since we are interested in electron transmission across the barrier, we take
the following ansatz for the spinors An(x) in the expansion (6a)

An(x) = in ×

{
δn0e

iEnxφ+ + rne
−iEnxφ− , x < 0 ,

tne
iEnx−ig0φ+ , x > 0 .

(6b)

The first phase factor in is introduced for later convenience. Furthermore,
the second phase factor exp(−ig0) will cancel the term exp(iσxg0) after ap-
plying the boundary condition (4) since exp(iσxg0)φ+ = exp(ig0)φ+. These
two phase factor have no effect on the transmission probabilities |tn|2 but
will simplify the final expression of the transmission amplitudes.

It is straightforward to calculate the time-averaged current density of the
wave function (6)

〈j〉 =
ω

2π

∫ 2π/ω

0

ψ(x, t)†σxψ(x, t) dt =

{
1−R , x < 0 ,

T , x > 0 .
(7a)

where

R =
∞∑

n=−∞

|rn|2 , T =
∞∑

n=−∞

|tn|2 , (7b)

are the reflection and transmission probabilities, respectively.
Inserting the ansatz (6) in Eq. (4), multiplying by exp(iEmt), m being an

arbitrary integer, and time-averaging over one period we get

δm0φ+ + rmφ− =
∞∑

n=−∞

Jm−n(g1)tnφ+ , m = 0 ,±1 , · · · (8)

4



where J`(z) denotes the Bessel function of the first kind. After multiplying
from the left by φT

− we conclude that rm = 0. Consequently, the reflection
probability R vanishes. From (8) with rm = 0, and recalling the orthonor-
mality condition of Bessel functions, one finally gets

tn = J−n(g1) , n = 0 ,±1 , · · · (9)

which satisfies T =
∑∞

n=−∞ |tn|2 = 1, as expected from the previous result
R = 0.

Several important conclusions can be drawn from the above results. First,
the transmission probability is always unity, indicating that Klein tunneling
persists even if the barrier is harmonically modulated in time (g1 6= 0).
Nevertheless, the transmission probability through the elastic channel T0 =
|t0|2 = J2

0 (g1) < 1 is reduced as compared to the static barrier, for which
T0 = 1. Second, the transmission amplitudes given by (9) are independent
of the incoming energy E and the driving frequency ω. We will see in the
next section that the latter is a consequence of the peculiarities of having an
infinitely narrow barrier.

3. Time-harmonic square barrier

We now consider the scattering from a square barrier of finite width a.
In this situation, the potential appearing in the massless Dirac equation (1)
is

V (x, t) =

{
V0 + V1 cosωt , −a/2 < x < a/2 ,
0 , otherwise .

(10)

Solutions of the Dirac equation (1) with the time-harmonic potential (10)
can be again written down as in Eq. (6a), now including the origin of co-
ordinates x = 0 since the potential is nonsingular everywhere. Outside the
barrier region (|x| > a/2) the spinors An(x) are expressed as combination of
travelling waves

An(x) = in ×

{
δn0e

i(Enx+V0a/2)φ+ + rne
−i(Enx+V0a/2)φ− , x < −a/2 ,

tne
i(Enx−V0a/2)φ+ , x > a/2 .

(11a)
where the phase factors in and exp(±iV0a/2) are introduced for later con-
venience. Inside the barrier region, solutions are of the form (see, e.g.,
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Refs. [19, 20, 21])

An(x) =
∞∑

p=−∞

[
Ape

i(Ep−V0)xφ+ +Bpe
−i(Ep−V0)xφ−

]
Jn−p(V1/ω) , (11b)

where x < |a/2|.
Since the potential is nonsingular, the wave function ψ±(x, t) is continu-

ous at x = ±a/2 and we are led to two equations which we do not write down
for brevity. Multiplying them by exp(iEmt), m being an arbitrary integer,
and time-averaging over one period we get

δm0 =
∞∑

p=−∞

Ape
i(m−p)ωa/2Jm−p(V1/ω) , (12a)

tm = i−m
∞∑

p=−∞

Ape
−i(m−p)ωa/2Jm−p(V1/ω) , (12b)

rm = i−m
∞∑

p=−∞

Bpe
−i(m−p)ωa/2Jm−p(V1/ω) , (12c)

0 =
∞∑

p=−∞

Bpe
i(m−p)ωa/2Jm−p(V1/ω) , (12d)

Using the orthonormality properties of the Bessel functions it is not dif-
ficult to show from (12d) that Bp = 0. This implies that backscattering
at the discontinuity x = a/2 is suppressed. From (12c) we conclude that
rm = 0 and the reflection coefficient vanishes (backscattering at x = −a/2
is also suppressed). Taking into account the orthonormality properties of
the Bessel functions again, one gets Ap = exp(ipωa/2)J−p(V1/ω) from (12a).
Therefore

tm = i−m
∞∑

p=−∞

e−i(m−p)ωaJm−p(V1/ω)J−p(V1/ω)

= J−m

(
2
V1

ω

∣∣∣sin(ωa
2

)∣∣∣ ) , (13)

where m = 0 ,±1 , . . . and the sum is calculated in the Appendix. In accor-
dance with the previous result R = 0 for the square barrier, the transmission
probability (7) becomes unity in this case. Similarly to what we found for the

6



sharply-peaked barrier in (9), the transmission amplitudes are independent
of the incoming energy. However, in this case they depend on the driving
frequency.

The comparison of the result (13) with the transmission amplitudes for
the sharply-peaked barrier given in (9) allows as to define an effective har-
monic coupling for the square barrier

g1,eff(ωa) = 2
g1

ωa

∣∣∣sin(ωa
2

)∣∣∣ , (14)

where now g1 = V1a. Therefore, we come the important conclusion that
the scattering properties of harmonic-modulated barriers can be successfully
described by a sharply-peaked barrier with a renormalized coupling constant
given by (14). The renormalized coupling constant approaches the bare cou-
pling constant g1 when ωa � 1. Figure 1 shows the transmission probabil-
ities for the central band, T0 = |t0|2, and the first side bands, T±1, where
Tn = |tn|2 = J2

n(g1,eff), as a function of the bare coupling constant g1 and
different values of ωa. It is quite apparent that the result obtained for the
sharply-peaked potential (9), corresponding to ωa = 0 in the plots, is a very
good approximation to the square barrier even if ωa is not too small.
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0.0
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Elastic channel

0 1 2 3 4
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0.0

0.2

0.4

T
±

1

First side bands

a) b)

Figure 1: Transmission probabilities for a) the central band, T0, and b) the two nearest
side bands, T±1, as a bare coupling constant g1 = V1a and different values of the parameter
ωa.

4. Arbitrary barriers of finite width

The analysis of the scattering solutions for the time-harmonic square
barrier pointed out that backscattering is suppressed at the edges x = ±a/2.
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In addition, the transmission amplitudes (13) become independent of the
static component of the potential, V0. All this suggests that the transmission
amplitudes for a time-harmonic barrier of arbitrary shape

V (x, t) =

{
V0(x) + V1 cosωt , −a/2 < x < a/2 ,
0 , otherwise ,

(15)

should be exactly the same as those obtained in the previous section. The
idea behind this conjecture is that any static barrier can be regarded as a
superposition of narrow square barriers and heights given by V0(xi), xi being
the center of each narrow barrier. But there are not multiple reflections
inside the barrier region since backscattering is suppressed, then transmission
should be independent of the exact shape of the static component of the
potential. To validate this conjecture, we look for a solution of the form (6a).
It is a matter of simple algebra to check that the wave function (6a) with the
spinors

An(x) =
∞∑

p=−∞

Ape
i[Epx−K0(x)]Jn−p(V1/ω)φ+ , x < |a/2| , (16)

satisfies the massless Dirac equation (1) for the potential (15). Here the
function K0(x) is defined from the relation V0(x) = dK0(x)/dx. Outside the
barrier region the spinors take the form

An(x) = in ×

{
δn0e

i[Enx−K0(−a/2)]φ+ , x < −a/2 ,
tne

i[Enx−K0(a/2)]φ+ , x > a/2 .
(17)

Finally, imposing the continuity of the wave function at x = ±a/2 and
proceeding as in the previous section we arrive at (13). The conclusion from
this analysis is that the static part of the potential V (x, t) plays the role of
a phase factor in the transmission amplitudes and consequently it does not
affect the transmission probabilities Tn = |tn|2.

5. Conclusions

In summary, we have found exactly the scattering solutions of massless
Dirac electrons subjected to time-harmonic barriers of arbitrary shape. The
Floquet theory allows us to express the corresponding transmission ampli-
tudes in terms of Bessel functions. In all cases the amplitudes are found to
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be independent of the incoming energy and, in the case of the sharply-peaked
barrier, also of the driving frequency. Most important, we proved that the
approximation of a finite-width barrier by a sharply-peaked one leads to very
accurate results when ωa is not large.

This work was supported by MICINN (projects MAT2010-17180 and
FIS2009-07880), JCYL (project SA226U13) and USAL (project KBBB). C.
G.-S. acknowledges financial support from Comunidad de Madrid and Euro-
pean Social Foundation.

Appendix A. Graf’s addition theorem of Bessel functions

Let us consider a triangle with sides x, y and z. Let ϕ be the angle
between sides x and y. Similarly, let Ψ be the angle between sides x and z.
Graf’s addition theorem of Bessel functions states that (see, e.g., page 27 of
Ref. [22])

J−m(z) e−imΨ =
∞∑

p=−∞

Jp−m(x)Jp(y) eipϕ . (A.1)

We now take x = y = V1/ω and ϕ = ωa. From simple trigonometric con-
siderations we get z = (2V1/ω) |sin(ωa/2)| and Ψ = (π − ωa)/2 in this case.
Therefore exp(−imΨ) = i−m exp(imωa/2) and (A.1) leads to equation (13).
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