Test of universal scaling of ac conductivity in ionic conductors

Impacto

Downloads

Downloads per month over past year

León Yebra, Carlos and Lunkenheimer, P. and Ngai, K. L. (2001) Test of universal scaling of ac conductivity in ionic conductors. Physical review B, 64 (18). ISSN 0163-1829

[thumbnail of LeonC94libre.pdf]
Preview
PDF
78kB

Official URL: http://dx.doi.org/10.1103/PhysRevB.64.184304




Abstract

Electrical relaxation data of crystalline yttria-stabilized zirconia are used to analyze the permittivity change observed in the spectra of the real part of the permittivity in ionic conducting materials. It is found that this permittivity change is independent of both temperature and mobile-ion concentration, and it is determined solely by the degree of interaction among ions in the relaxation process. This finding is at odds with an expression for the permittivity change in the framework of a proposed universal ac conductivity scaling law for glassy ionic conductors. On the other hand, not only the total permitivity change, but also the particular frequency dependence of the permittivity spectra is found to be consistent with the analysis of electrical relaxation in terms of the electric modulus. The results of this work give further support to the use of the electric modulus in describing electrical relaxation in ionic conductors.


Item Type:Article
Additional Information:

© 2001 The American Physical Society. The work performed at the Naval Research Laboratory was supported by ONR. We thank J. Ullrich for help in the dielectric measurements and J. Santamaría and C. T. Moynihan for helpful discussions.

Uncontrolled Keywords:Electrical-field relaxation; Iodide-silver selenate; Dielectric-relaxation; Activation-energies; Decay function; Spin-lattice; Mobile ions; Glasses; Spectra; Dynamics.
Subjects:Sciences > Physics > Electricity
Sciences > Physics > Electronics
ID Code:31102
Deposited On:26 Jun 2015 07:27
Last Modified:10 Dec 2018 14:58

Origin of downloads

Repository Staff Only: item control page