Publication:
Microglia in mouse retina contralateral to experimental glaucoma exhibit multiple signs of activation in all retinal layers

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2014-07-26
Authors
Gallego Collado, Beatriz Isabel
Hoz Montañana, María Rosa de
Valiente Soriano, Francisco Javier
Avilés Trigueros, Marcelino
Villegas Pérez, María Paz
Vidal Sanz, Manuel
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
BioMed Central Ltd.
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Background: Glaucomatous optic neuropathy, a leading cause of blindness, can progress despite control of intraocular pressure - currently the main risk factor and target for treatment. Glaucoma progression shares mechanisms with neurodegenerative disease, including microglia activation. In the present model of ocular hypertension (OHT), we have recently described morphological signs of retinal microglia activation and MHC-II upregulation in both the untreated contralateral eyes and OHT eyes. By using immunostaining, we sought to analyze and quantify additional signs of microglia activation and differences depending on the retinal layer. Methods: Two groups of adult Swiss mice were used: age-matched control (nai¨ve, n = 12), and lasered (n = 12). In the lasered animals, both OHT eyes and contralateral eyes were analyzed. Retinal whole-mounts were immunostained with antibodies against Iba-1, MHC-II, CD68, CD86, and Ym1. The Iba-1+ cell number in the plexiform layers (PL) and the photoreceptor outer segment (OS), Iba-1+ arbor area in the PL, and area of the retina occupied by Iba-1+ cells in the nerve fiber layer-ganglion cell layer (NFL-GCL) were quantified. Results: The main findings in contralateral eyes and OHT eyes were: i) ameboid microglia in the NFL-GCL and OS; ii) the retraction of processes in all retinal layers; iii) a higher level of branching in PL and in the OS; iv) soma displacement to the nearest cell layers in the PL and OS; v) the reorientation of processes in the OS; vi) MHC-II upregulation in all retinal layers; vii) increased CD68 immunostaining; and viii) CD86 immunolabeling in ameboid cells. In comparison with the control group, a significant increase in the microglial number in the PL, OS, and in the area occupied by Iba-1+ cells in the NFL-GCL, and significant reduction of the arbor area in the PL. In addition, rounded Iba-1+ CD86+ cells in the NFL-GCL, OS and Ym1+ cells, and rod-like microglia in the NFL-GCL were restricted to OHT eyes. Conclusions: Several quantitative and qualitative signs of microglia activation are detected both in the contralateral and OHT eyes. Such activation extended beyond the GCL, involving all retinal layers. Differences between the two eyes could help to elucidate glaucoma pathophysiology.
Description
© 2014 Rojas et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Keywords
Citation
1. Sommer A: Intraocular pressure and glaucoma. Am J Ophthalmol 1989, 107:186. 2. Gordon MO, Beiser JA, Brandt JD, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP, Parrish I, Richard K: The ocular hypertension treatment study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol 2002, 120:714. 3. Heijl A, Leske MC, Bengtsson B, Hyman L, Bengtsson B, Hussein M: Reduction of intraocular pressure and glaucoma progression: results from the early manifest glaucoma trial. Arch Ophthalmol 2002, 120:1268–1279. 4. Leske MC, Heijl A, Hussein M, Bengtsson B, Hyman L, Komaroff E: Factors for glaucoma progression and the effect of treatment: the early manifest glaucoma trial. Arch Ophthalmol 2003, 121:48–56. 5. Wax MB, Tezel G, Yang J, Peng G, Patil RV, Agarwal N, Sappington RM, Calkins DJ: Induced autoimmunity to heat shock proteins elicits glaucomatous loss of retinal ganglion cell neurons via activated T-cell-derived fas-ligand. J Neurosci 2008, 28:12085–12096. 6. Gramlich OW, Beck S, und Hohenstein-Blaul N, von Thun N, Boehm N, Ziegler A, Vetter JM, Pfeiffer N, Grus FH: Enhanced insight into the autoimmune component of glaucoma: IgG autoantibody accumulation and pro-inflammatory conditions in human glaucomatous retina. PLoS One 2013, 8:e57557. 7. Sappington RM, Sidorova T, Long DJ, Calkins DJ: TRPV1: contribution to retinal ganglion cell apoptosis and increased intracellular Ca2+ with exposure to hydrostatic pressure. Invest Ophthalmol Vis Sci 2009, 50:717–728. 8. McKinnon SJ, Goldberg LD, Peeples P, Walt JG, Bramley TJ: Current management of glaucoma and the need for complete therapy. Am J Manag Care 2008, 14:S20–S27. 9. Crish SD, Sappington RM, Inman DM, Horner PJ, Calkins DJ: Distal axonopathy with structural persistence in glaucomatous neurodegeneration. Proc Natl Acad Sci U S A 2010, 107:5196–5201. 10. Libby RT, Li Y, Savinova OV, Barter J, Smith RS, Nickells RW, John SW: Susceptibility to neurodegeneration in a glaucoma is modified by Bax gene dosage. PLoS Genet 2005, 1:e4. 11. Streit WJ, Conde JR, Fendrick SE, Flanary BE, Mariani CL: Role of microglia in the central nervous system’s immune response. Neurol Res 2005, 27:685–691. 12. Bosco A, Steele MR, Vetter ML: Early microglia activation in a mouse model of chronic glaucoma. J Comp Neurol 2011, 519:599–620. 13. Lee JE, Liang KJ, Fariss RN, Wong WT: Ex vivo dynamic imaging of retinal microglia using time-lapse confocal microscopy. Invest Ophthalmol Vis Sci 2008, 49:4169–4176. 14. Tambuyzer BR, Ponsaerts P, Nouwen EJ: Microglia: gatekeepers of central nervous system immunology. J Leukoc Biol 2009, 85:352–370. 15. Thanos S: The relationship of microglial cells to dying neurons during natural neuronal cell death and axotomy‐induced degeneration of the Rat retina. Eur J Neurosci 1991, 3:1189–1207. 16. Zhang C, Tso MO: Characterization of activated retinal microglia following optic axotomy. J Neurosci Res 2003, 73:840–845. 17. Garcia-Valenzuela E, Sharma SC, Piña AL: Multilayered retinal microglial response to optic nerve transection in rats. Mol Vis 2005, 11:225–231. 18. Baptiste D, Powell K, Jollimore C, Hamilton C, LeVatte T, Archibald M, Chauhan B, Robertson G, Kelly M: Effects of minocycline and tetracycline on retinal ganglion cell survival after axotomy. Neuroscience 2005, 134:575–582. 19. Sobrado-Calvo P, Vidal-Sanz M, Villegas-Perez MP: Rat retinal microglial cells under normal conditions, after optic nerve section, and after optic Rojas et al. Journal of Neuroinflammation 2014, 11:133 Page 21 of 24 http://www.jneuroinflammation.com/content/11/1/133 nerve section and intravitreal injection of trophic factors or macrophage inhibitory factor. J Comp Neurol 2007, 501:866–878. 20. Villegas-Perez MP, Vidal-Sanz M, Rasminsky M, Bray GM, Aguayo AJ: Rapid and protracted phases of retinal ganglion cell loss follow axotomy in the optic nerve of adult rats. J Neurobiol 1993, 24:23–36. 21. Peinado-Ramon P, Salvador M, Villegas-Perez MP, Vidal-Sanz M: Effects of axotomy and intraocular administration of NT-4, NT-3, and brain-derived neurotrophic factor on the survival of adult rat retinal ganglion cells. A quantitative in vivo study. Invest Ophthalmol Vis Sci 1996, 37:489–500. 22. Thanos S, Pavlidis C, Mey J, Thiel HJ: Specific transcellular staining of microglia in the adult rat after traumatic degeneration of carbocyaninefilled retinal ganglion cells. Exp Eye Res 1992, 55:101–117. 23. Thanos S, Pavlidis C, Mey J, Thiel HJ: Effect of brain-derived neurotrophic factor on mouse axotomized retinal ganglion cells and phagocytic microglia. Invest Ophthalmol Vis Sci 2013, 54:974–985. 24. Davies MH, Eubanks JP, Powers MR: Microglia and macrophages are increased in response to ischemia-induced retinopathy in the mouse retina. Mol Vis 2006, 12:467–477. 25. Zhang C, Lam TT, Tso MO: Heterogeneous populations of microglia/macrophages in the retina and their activation after retinal ischemia and reperfusion injury. Exp Eye Res 2005, 81:700–709. 26. Selles-Navarro I, Villegas-Perez MP, Salvador-Silva M, Ruiz-Gomez JM, Vidal-Sanz M: Retinal ganglion cell death after different transient periods of pressure-induced ischemia and survival intervals. A quantitative in vivo study. Invest Ophthalmol Vis Sci 1996, 37:2002–2014. 27. Lafuente MP, Villegas-Perez MP, Sobrado-Calvo P, Garcia-Aviles A, Miralles de Imperial J, Vidal-Sanz M: Neuroprotective effects of alpha(2)-selective adrenergic agonists against ischemia-induced retinal ganglion cell death. Invest Ophthalmol Vis Sci 2001, 42:2074–2084. 28. Wang X, Sam-Wah Tay S, Ng Y: Nitric oxide, microglial activities and neuronal cell death in the lateral geniculate nucleus of glaucomatous rats. Brain Res 2000, 878:136–147. 29. Chauhan BC, Pan J, Archibald ML, LeVatte TL, Kelly ME, Tremblay F: Effect of intraocular pressure on optic disc topography, electroretinography, and axonal loss in a chronic pressure-induced rat model of optic nerve damage. Invest Ophthalmol Vis Sci 2002, 43:2969–2976. 30. Naskar R, Wissing M, Thanos S: Detection of early neuron degeneration and accompanying microglial in the retina of a rat model of glaucoma. Invest Ophthalmol Vis Sci 2002, 43:2962–2968. 31. Inman DM, Horner PJ: Reactive nonproliferative gliosis predominates in a chronic mouse model of glaucoma. Glia 2007, 55:942–953. 32. Johnson EC, Jia L, Cepurna WO, Doser TA, Morrison JC: Global changes in optic nerve head gene expression after exposure to elevated intraocular pressure in a rat glaucoma model. Invest Ophthalmol Vis Sci 2007, 48:3161–3177. 33. Ebneter A, Casson RJ, Wood JP, Chidlow G: Microglial activation in the visual pathway in experimental glaucoma: spatiotemporal characterization and correlation with axonal injury. Invest Ophthalmol Vis Sci 2010, 51:6448–6460. 34. Son JL, Soto I, Oglesby E, Lopez-Roca T, Pease ME, Quigley HA, Marsh-Armstrong N: Glaucomatous optic nerve injury involves early astrocyte reactivity and late oligodendrocyte loss. Glia 2010, 58:780–789. 35. de Hoz R, Gallego BI, Ramírez AI, Rojas B, Salazar JJ, Valiente-Soriano FJ, Avilés-Trigueros M, Villegas-Perez MP, Triviño A, Vidal-Sanz M: Rod-like microglia Are restricted to eyes with laser-induced ocular hypertension but absent from the microglial changes in the contralateral untreated eye. PLoS One 2013, 8:e83733. 36. Gallego BI, Salazar JJ, de Hoz R, Rojas B, Ramírez AI, Salinas-Navarro M, Ortín-Martínez A, Valiente-Soriano FJ, Avilés-Trigueros M, Villegas-Perez MP: IOP induces upregulation of GFAP and MHC-II and microglia reactivity in mice retina contralateral to experimental glaucoma. J Neuroinflammation 2012, 9:92. 37. Quigley HA: Experimental glaucoma damage mechanism. Arch Ophthalmol 1983, 101:1301–1302. 38. Neufeld AH: Microglia in the optic nerve head and the region of parapapillary chorioretinal atrophy in glaucoma. Arch Ophthalmol 1999, 117:1050–1056. 39. Yuan L, Neufeld AH: Activated microglia in the human glaucomatous optic nerve head. J Neurosci Res 2001, 64:523–532. 40. Shimazawa M, Yamashima T, Agarwal N, Hara H: Neuroprotective effects of minocycline against in vitro and in vivo retinal ganglion cell damage. Brain Res 2005, 1053:185–194. 41. Levkovitch-Verbin H, Kalev-Landoy M, Habot-Wilner Z, Melamed S: Minocycline delays death of retinal ganglion cells in experimental glaucoma and after optic nerve transection. Arch Ophthalmol 2006, 124:520–526. 42. Bosco A, Inman DM, Steele MR, Wu G, Soto I, Marsh-Armstrong N, Hubbard WC, Calkins DJ, Horner PJ, Vetter ML: Reduced retina microglial activation and improved optic nerve integrity with minocycline treatment in the DBA/2 J mouse model of glaucoma. Invest Ophthalmol Vis Sci 2008, 49:1437–1446. 43. Salinas-Navarro M, Alarcon-Martinez L, Valiente-Soriano FJ, Ortin-Martinez A, Jimenez-Lopez M, Aviles-Trigueros M, Villegas-Perez MP, de la Villa P, Vidal-Sanz M: Functional and morphological effects of laser-induced ocular hypertension in retinas of adult albino Swiss mice. Mol Vis 2009, 15:2578–2598. 44. Cuenca N, Pinilla I, Fernández-Sánchez L, Salinas-Navarro M, Alarcón-Martínez L, Avilés-Trigueros M, de la Villa P, Miralles de Imperial J, Villegas-Pérez MP, Vidal-Sanz M: Changes in the inner and outer retinal layers after acute increase of the intraocular pressure in adult albino Swiss mice. Exp Eye Res 2010, 91:273–285. 45. Danias J, Kontiola AI, Filippopoulos T, Mittag T: Method for the noninvasive measurement of intraocular pressure in mice. Invest Ophthalmol Vis Sci 2003, 44:1138–1141. 46. Wang X, Ng YK, Tay SS: Factors contributing to neuronal degeneration in retinas of experimental glaucomatous rats. J Neurosci Res 2005, 82:674–689. 47. Vidal-Sanz M, Salinas-Navarro M, Nadal-Nicolas FM, Alarcon-Martinez L, Valiente-Soriano FJ, de Imperial JM, Aviles-Trigueros M, Agudo-Barriuso M, Villegas-Perez MP: Understanding glaucomatous damage: anatomical and functional data from ocular hypertensive rodent retinas. Prog Retin Eye Res 2012, 31:1–27. 48. Aihara M, Lindsey JD, Weinreb RN: Twenty-four-hour pattern of mouse intraocular pressure. Exp Eye Res 2003, 77:681–686. 49. Drouyer E, Dkhissi-Benyahya O, Chiquet C, WoldeMussie E, Ruiz G, Wheeler LA, Denis P, Cooper HM: Glaucoma alters the circadian timing system. PLoS One 2008, 3:e3931. 50. Ramírez JM, Triviño A, Ramírez AI, Salazar JJ, García-Sánchez J: Immunohistochemical study of human retinal astroglia. Vision Res 1994, 34:1935–1946. 51. Triviño A, De Hoz R, Salazar JJ, Ramírez AI, Rojas B, Ramírez JM: Distribution and organization of the nerve fiber and ganglion cells of the human choroid. Anat Embryol (Berl) 2002, 205:417–430. 52. de Hoz R, Gallego BI, Rojas B, Ramirez AI, Salazar JJ, Triviño A, de Gracia P, Ramirez JM: A new automatic method for microglial‐cell quantification in whole‐mount mouse retinas. Acta Ophthalmol 2013, 91:0. 53. Ramírez AI, Salazar JJ, de Hoz R, Rojas B, Gallego BI, Salinas-Navarro M, Alarcón-Martínez L, Ortín-Martínez A, Avilés-Trigueros M, Vidal-Sanz M, Trivino A, Ramírez JM: Quantification of the effect of different levels of IOP in the astroglia of the rat retina ipsilateral and contralateral to experimental glaucoma. Invest Ophthalmol Vis Sci 2010, 51:5690–5696. 54. Lam TT, Kwong JMK, Tso MOM: Early glial responses after acute elevated intraocular pressure in rats. Invest Ophthalmol Vis Sci 2003, 44:638–645. 55. Nork TM, Ver Hoeve JN, Poulsen GL, Nickells RW, Davis MD, Weber AJ, Vaegan Sarks SH, Lemley HL, Millecchia LL: Swelling and loss of photoreceptors in chronic human and experimental glaucomas. Arch Ophthalmol 2000, 118:235–245. 56. Grozdanic SD, Betts DM, Sakaguchi DS, Allbaugh RA, Kwon YH, Kardon RH: Laser-induced mouse model of chronic ocular hypertension. Invest Ophthalmol Vis Sci 2003, 44:4337–4346. 57. Fortune B, Bui BV, Morrison JC, Johnson EC, Dong J, Cepurna WO, Jia L, Barber S, Cioffi GA: Selective ganglion cell functional loss in rats with experimental glaucoma. Invest Ophthalmol Vis Sci 2004, 45:1854–1862. 58. Grozdanic SD, Kwon YH, Sakaguchi DS, Kardon RH, Sonea IM: Functional evaluation of retina and optic nerve in the rat model of chronic ocular hypertension. Exp Eye Res 2004, 79:75–83. 59. Holcombe DJ, Lengefeld N, Gole GA, Barnett NL: Selective inner retinal dysfunction precedes ganglion cell loss in a mouse glaucoma model. Br J Ophthalmol 2008, 92:683–688. 60. Nimmerjahn A, Kirchhoff F, Helmchen F: Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 2005, 308:1314–1318. 61. Joly S, Francke M, Ulbricht E, Beck S, Seeliger M, Hirrlinger P, Hirrlinger J, Lang KS, Zinkernagel M, Odermatt B, Samardzija M, Reichenbach A, Grimm C, Reme CE: Cooperative phagocytes: resident microglia and bone Rojas et al. Journal of Neuroinflammation 2014, 11:133 Page 22 of 24 http://www.jneuroinflammation.com/content/11/1/133 marrow immigrants remove dead photoreceptors in retinal lesions. Am J Pathol 2009, 174:2310–2323. 62. Karlstetter M, Ebert S, Langmann T: Microglia in the healthy and degenerating retina: Insights from novel mouse models. Immunobiology 2010, 215:685–691. 63. Bosco A, Crish SD, Steele MR, Romero CO, Inman DM, Horner PJ, Calkins DJ, Vetter ML: Early reduction of microglia activation by irradiation in a model of chronic glaucoma. PLoS One 2012, 7:e43602. 64. Beynon SB, Walker FR: Microglial activation in the injured and healthy brain: what are we really talking about? Practical and theoretical issues associated with the measurement of changes in microglial morphology. Neuroscience 2012, 225:162–171. 65. Nakajima KKohsaka S: Response of microglia to brain injury. In Neuroglia. Edited by Kettenmann H, Ransom BR. Oxford: Oxford University Press; 2005:443–453. 66. Walker FR, Beynon SB, Jones KA, Zhao Z, Kongsui R, Cairns M, Nilsson M: Dynamic structural remodelling of microglia in health and disease: A review of the models, the signals and the mechanisms. Brain Behav Immun 2014, 37:1–14. 67. Streit WJ, Walter SA, Pennell NA: Reactive microgliosis. 1999, 57:563–581. 68. Tremblay M, Majewska AK, Lowery RL: Microglial interactions with synapses are modulated by visual experience. PLoS One 2010, 8:e1000527. 69. Fontainhas AM, Wang M, Liang KJ, Chen S, Mettu P, Damani M, Fariss RN, Li W, Wong WT: Microglial morphology and dynamic behavior is regulated by ionotropic glutamatergic and GABAergic neurotransmission. PLoS One 2011, 6:e15973. 70. Hinwood M, Morandini J, Day TA, Walker FR: Evidence that microglia mediate the neurobiological effects of chronic psychological stress on the medial prefrontal cortex. Cereb Cortex 2012, 22:1442–1454. 71. Wilson MA, Molliver ME: Microglial response to degeneration of serotonergic axon terminals. Glia 1994, 11:18–34. 72. Hurley SD, Coleman PD: Facial nerve axotomy in aged and young adult rats: analysis of the glial response. Neurobiol Aging 2003, 24:511–518. 73. Morrison HW, Filosa JA: A quantitative spatiotemporal analysis of microglia morphology during ischemic stroke and reperfusion. J Neuroinflammation 2013, 10:10–14. 74. Neumann H, Kotter M, Franklin R: Debris clearance by microglia: an essential link between degeneration and regeneration. Brain 2009, 132:288–295. 75. Perry VH, O’Connor V: The role of microglia in synaptic stripping and synaptic degeneration: a revised perspective. ASN Neuro 2010, 14:e00047. 76. Blinzinger K, Kreutzberg G: Displacement of synaptic terminals from regenerating motoneurons by microglial cells. Cell Tissue Res 1968, 85:145–157. 77. Cho BP, Song DY, Sugama S, Shin DH, Shimizu Y, Kim SS, Kim YS, Joh TH: Pathological dynamics of activated microglia following medial forebrain bundle transection. Glia 2006, 53:92–102. 78. Cao T, Thomas TC, Ziebell JM, Pauly JR, Lifshitz J: Morphological and genetic activation of microglia after diffuse traumatic brain injury in the rat. Neuroscience 2012, 225:65–75. 79. Humphrey MF, Moore SR: Microglial responses to focal lesions of the rabbit retina: correlation with neural and macroglial reactions. Glia 1996, 16:325–341. 80. Roque RS, Imperial CJ, Caldwell RB: Microglial cells invade the outer retina as photoreceptors degenerate in Royal College of Surgeons rats. Invest Ophthalmol Vis Sci 1996, 37:196–203. 81. Harada T, Harada C, Kohsaka S, Wada E, Yoshida K, Ohno S, Mamada H, Tanaka K, Parada LF, Wada K: Microglia–Müller glia cell interactions control neurotrophic factor production during light-induced retinal degeneration. J Neurosci 2002, 22:9228–9236. 82. Hughes EH, Schlichtenbrede FC, Murphy CC, Sarra G, Luthert PJ, Ali RR, Dick AD: Generation of activated sialoadhesin-positive microglia during retinal degeneration. Invest Ophthalmol Vis Sci 2003, 44:2229–2234. 83. Marella M, Chabry J: Neurons and astrocytes respond to prion infection by inducing microglia recruitment. J Neurosci 2004, 24:620–627. 84. Lewis GP, Sethi CS, Carter KM, Charteris DG, Fisher SK: Microglial cell activation following retinal detachment: a comparison between species. Mol Vis 2005, 11:491–500. 85. Zeng HY, Zhu XA, Zhang C, Yang LP, Wu LM, Tso MO: Identification of sequential events and factors associated with microglial activation, migration, and cytotoxicity in retinal degeneration in rd mice. Invest Ophthalmol Vis Sci 2005, 46:2992–2999. 86. Zhang C, Shen J, Lam TT, Zeng H, Chiang SK, Yang F, Tso M: Activation of microglia and chemokines in light-induced retinal degeneration. Mol Vis 2005, 11:887–895. 87. Ng TF, Streilein JW: Light-induced migration of retinal microglia into the subretinal space. Invest Ophthalmol Vis Sci 2001, 42:3301–3310. 88. Langmann T: Microglia activation in retinal degeneration. J Leukoc Biol 2007, 81:1345–1351. 89. Santos AM, Martin-Oliva D, Ferrer-Martin RM, Tassi M, Calvente R, Sierra A, Carrasco MC, Marin-Teva JL, Navascues J, Cuadros MA: Microglial response to light-induced photoreceptor degeneration in the mouse retina. J Comp Neurol 2010, 518:477–492. 90. Xu H, Chen M, Mayer EJ, Forrester JV, Dick AD: Turnover of resident retinal microglia in the normal adult mouse. Glia 2007, 55:1189–1198. 91. Xu H, Chen M, Manivannan A, Lois N, Forrester JV: Age‐dependent accumulation of lipofuscin in perivascular and subretinal microglia in experimental mice. Aging Cell 2008, 7:58–68. 92. Jonas RA, Yuan TF, Liang YX, Jonas JB, Tay DKC, Ellis-Behnke RG: The spider effect: morphological and orienting classification of microglia in response to stimuli in vivo. PLoS One 2012, 7:e30763. 93. Thanos S: Sick photoreceptors attract activated microglia from the ganglion cell layer: a model to study the inflammatory cascades in rats with inherited retinal dystrophy. Brain Res 1992, 588:21–28. 94. Thanos S, Richter W: The migratory potential of vitally labelled microglial cells within the retina of rats with hereditary photoreceptor dystrophy. Int J Dev Neurosci 1993, 11:671–680. 95. Gupta N, Brown KE, Milam AH: Activated microglia in human retinitis pigmentosa, late-onset retinal degeneration, and age-related macular degeneration. Exp Eye Res 2003, 76:463–471. 96. Combadiere C, Feumi C, Raoul W, Keller N, Rodero M, Pezard A, Lavalette S, Houssier M, Jonet L, Picard E, Debre P, Sirinyan M, Deterre P, Ferroukhi T, Cohen SY, Chauvaud D, Jeanny JC, Chemtob S, Behar-Cohen F, Sennlaub F: CX3CR1-dependent subretinal microglia cell accumulation is associated with cardinal features of age-related macular degeneration. J Clin Invest 2007, 117:2920–2928. 97. Chinnery HR, McLenachan S, Humphries T, Kezic JM, Chen X, Ruitenberg MJ, McMenamin PG: Accumulation of murine subretinal macrophages: effects of age, pigmentation and CX3CR1. Neurobiol Aging 2012, 33:1769–1776. 98. Ma W, Zhao L, Fontainhas AM, Fariss RN, Wong WT: Microglia in the mouse retina alter the structure and function of retinal pigmented epithelial cells: a potential cellular interaction relevant to AMD. PLoS One 2009, 4:e7945. 99. Xu H, Chen M, Forrester JV: Para-inflammation in the aging retina. Prog Retin Eye Res 2009, 28:348–368. 100. Tezel G, the Fourth ARVO/Pfizer Ophthalmics Research Institute Conference, Working Group: The role of glia, mitochondria, and the immune system in glaucoma. Invest Ophthalmol Vis Sci 2009, 50:1001–1012. 101. Kaneko H, Nishiguchi KM, Nakamura M, Kachi S, Terasaki H: Characteristics of bone marrow-derived microglia in the normal and injured retina. Invest Ophthalmol Vis Sci 2008, 49:4162–4168. 102. Howell GR, Soto I, Zhu X, Ryan M, Macalinao DG, Sousa GL, Caddle LB, MacNicoll KH, Barbay JM, Porciatti V, Anderson MG, Smith RS, Clark AF, Libby RT, John SW: Radiation treatment inhibits monocyte entry into the optic nerve head and prevents neuronal damage in a mouse model of glaucoma. J Clin Invest 2012, 122:1246–1261. 103. Wang X, Tay S, Ng YK: An immunohistochemical study of neuronal and glial cell reactions in retinae of rats with experimental glaucoma. Exp Brain Res 2000, 132:476. 104. Inman DM, Lupien CB, Horner PJ: Manipulating Glia to Protect Retinal Ganglion Cells in Glaucoma. In Glaucoma-Current Clinical and Research Aspects. Edited by Gunvant P. Rijeka, Croatia: InTech; 2011:26–50. 105. Giulian D, Ingeman JE: Colony-stimulating factors as promoters of ameboid microglia. J Neurosci 1988, 8:4707–4717. 106. Aloisi F: Cytokine Production. In Neuroglia. Edited by Kettenmann H, Ransom BR. Oxford, United Kingdom: Oxford University Press; 2005:285–301. 107. Wohl SG, Schmeer CW, Witte OW, Isenmann S: Proliferative response of microglia and macrophages in the adult mouse Eye after optic nerve lesion. Invest Ophthalmol Vis Sci 2010, 51:2686–2696. 108. Kreutzberg GW: Microglia: a sensor for pathological events in the CNS. Trends Neurosci 1996, 19:312–318. 109. Caicedo A, Espinosa-Heidmann DG, Piña Y, Hernandez EP, Cousins SW: Blood-derived macrophages infiltrate the retina and activate Müller glial Rojas et al. Journal of Neuroinflammation 2014, 11:133 Page 23 of 24 http://www.jneuroinflammation.com/content/11/1/133 cells under experimental choroidal neovascularization. Exp Eye Res 2005, 81:38–47. 110. Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan W: ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 2005, 8:752–758. 111. Kezic J, McMenamin PG: Differential turnover rates of monocyte-derived cells in varied ocular tissue microenvironments. J Leukoc Biol 2008, 84:721–729. 112. Muther PS, Semkova I, Schmidt K, Abari E, Kuebbeler M, Beyer M, Abken H, Meyer KL, Kociok N, Joussen AM: Conditions of retinal glial and inflammatory cell activation after irradiation in a GFP-chimeric mouse model. Invest Ophthalmol Vis Sci 2010, 51:4831–4839. 113. Prinz M, Mildner A: Microglia in the CNS: immigrants from another world. Glia 2011, 59:177–187. 114. Chen L, Yang P, Kijlstra A: Distribution, markers, and functions of retinal microglia. Ocul Immunol Inflamm 2002, 10:27–39. 115. Walker FR, Nilsson M, Jones K: Acute and chronic stress-induced disturbances of microglial plasticity, phenotype and function. Curr Drug Targets 2013, 14:1262–1276. 116. Yang J, Yang P, Tezel G, Patil RV, Hernandez MR, Wax MB: Induction of HLA-DR expression in human lamina cribrosa astrocytes by cytokines and simulated ischemia. Invest Ophthalmol Vis Sci 2001, 42:365–371. 117. Tezel G, Chauhan BC, LeBlanc RP, Wax MB: Immunohistochemical assessment of the glial mitogen-activated protein kinase activation in glaucoma. Invest Ophthalmol Vis Sci 2003, 44:3025–3033. 118. Tezel G, Yang X, Luo C, Peng Y, Sun SL, Sun D: Mechanisms of immune system activation in glaucoma: oxidative stress-stimulated antigen presentation by the retina and optic nerve head glia. Invest Ophthalmol Vis Sci 2007, 48:705–714. 119. Chiu K, Yeung S, So K, Chang RC: Modulation of morphological changes of microglia and neuroprotection by monocyte chemoattractant protein-1 in experimental glaucoma. Cell Mol Immunol 2010, 7:61–68. 120. Chang L, Karin M: Mammalian MAP kinase signalling cascades. Nature 2001, 410:37–40. 121. Perego C, Fumagalli S, De Simoni M: Temporal pattern of expression and colocalization of microglia/macrophage phenotype markers following brain ischemic injury in mice. J Neuroinflammation 2011, 8:174. 122. Broderick C, Duncan L, Taylor N, Dick AD: IFN-γ and LPS-Mediated IL-10–Dependent Suppression of Retinal Microglial Activation. Invest Ophthalmol Vis Sci 2000, 41:2613–2622. 123. Barron KD: The microglial cell. A historical review. J Neurol Sci 1995, 134:57–68. 124. Schuetz E, Thanos S: Microglia-targeted pharmacotherapy in retinal neurodegenerative diseases. Curr Drug Targets 2004, 5:619–627. 125. Krady JK, Basu A, Allen CM, Xu Y, LaNoue KF, Gardner TW, Levison SW: Minocycline reduces proinflammatory cytokine expression, microglial activation, and caspase-3 activation in a rodent model of diabetic retinopathy. Diabetes 2005, 54:1559–1565.
Collections