Impacto
Downloads
Downloads per month over past year
Barba, J. C: and Finkel Morgenstern, Federico and González López, Artemio and Rodríguez González, Miguel Ángel (2010) Inozemtsev's hyperbolic spin model and its related spin chain. Nuclear physics B, 839 (3). pp. 499-525. ISSN 0550-3213
Preview |
PDF
Creative Commons Attribution. 1MB |
Official URL: http://dx.doi.org/10.1016/j.nuclphysb.2010.06.008
Abstract
In this paper we study Inozemtsev's su(m) quantum spin model with hyperbolic interactions and the associated spin chain of Haldane-Shastry type introduced by Frahm and Inozemtsev. We compute the spectrum of Inozemtsev's model, and use this result and the freezing trick to derive a simple analytic expression for the partition function of the Frahm-Inozemtsev chain. We show that the energy levels of the latter chain can be written in terms of the usual motifs for the Haldane-Shastry chain, although with a different dispersion relation. The formula for the partition function is used to analyze the behavior of the level density and the distribution of spacings between consecutive unfolded levels. We discuss the relevance of our results in connection with two well-known conjectures in quantum chaos.
Item Type: | Article |
---|---|
Additional Information: | ©2010 Elsevier B.V. All rights reserved. |
Uncontrolled Keywords: | Exactly solvable spin models; Spin chains; Quantum chaos |
Subjects: | Sciences > Physics > Physics-Mathematical models Sciences > Physics > Mathematical physics |
ID Code: | 31286 |
Deposited On: | 03 Jul 2015 16:49 |
Last Modified: | 10 Dec 2018 15:09 |
Origin of downloads
Repository Staff Only: item control page