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We study nonclassical polarization states characterized by polarization distributions taking negative values.
We consider two different families of polarization distributions that include polarization analogs of the Wigner
function. We apply different measures of nonclassical behavior such as the nonclassical depth and the distance
of the polarization distribution to its modulus. This approach is applied to relevant quantum field states such as
one-photon states, SU�2� coherent states, quadrature coherent states, and twin number states. We examine
observables allowing the detection of the negativity of the polarization distributions.
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I. INTRODUCTION

The basic quality of the quantum theory is the existence
of observable results in contradiction with the predictions of
classical physics. When this occurs we say that the system is
in a nonclassical state.

In this work we focus on nonclassical polarization states.
Polarization is a fundamental constituent of light, both in the
quantum and in the classical domains. In the quantum regime
this variable has been crucial in order to demonstrate experi-
mentally fundamental properties and applications of the
quantum theory such as entanglement, complementarity,
quantum cryptography, teleportation, and Bell inequalities
�1�.

We outline the borderline between classical and quantum
polarization states with the help of a phase-space description
of the problem in which polarization states are represented
by distributions on the Poincaré sphere. In this context, non-
classical polarization states are identified as those having dis-
tributions with negative values.

The representation of quantum states by phase-space dis-
tributions is not unique. For definiteness, in Sec. II we con-
sider families of distributions related to the Wigner function
because of their good properties �2�. More specifically, we
consider two different approaches. Polarization distributions
can be defined as: �i� Marginal distributions obtained from
complex-amplitude distributions by removing the variables
irrelevant for the specification of polarization, i.e., the total
intensity and a global phase �3,4�, or �ii� via directly defined
distributions purposely introduced for spherical phase spaces
associated with angular momenta �5�. This last approach can
be applied to polarization since the Stokes operators satisfy
the commutation relations of an angular momentum, the as-
sociated phase space being the Poincaré sphere.

In Sec. III we assess the amount of nonclassical behavior
by translating to polarization two measures of nonclassical
behavior previously introduced for complex-amplitude distri-
butions. The first one is the nonclassical depth, defined in
terms of the number of distributions that take negative values
for a given state �6�. The second one is the distance between

the polarization distribution and its modulus �7�. In Sec. IV
we apply these ideas to relevant field states such as one-
photon states, SU�2� coherent states, quadrature coherent
states, and twin number states. In Sec. V we discuss simple
practical procedures to detect the negativity of polarization
distributions.

II. POLARIZATION DISTRIBUTIONS

The basic polarization variables are the Stokes operators
S0 and S

S0 = a1
†a1 + a2

†a2, Sy = i�a2
†a1 − a1

†a2� ,

Sx = a2
†a1 + a1

†a2, Sz = a1
†a1 − a2

†a2, �2.1�

where a1, a2 are the complex amplitude operators for two
field modes �8�. Their mean values are the classical Stokes
parameters �S�. These operators are formally equivalent to an
angular momentum, S=2j, allowing the following equiva-
lence between number states and the eigenstates of jz and j2:

�j,m� = �n1 = j + m�1 � �n2 = j − m�2, �2.2�

where �n1�1, �n2�2 are photon-number states in the corre-
sponding mode.

In classical optics the states of definite polarization are
specified by Stokes parameters satisfying �S�2= �S0�2, which
can be represented as a definite point �S� / �S0� in a unit
sphere: the Poincaré sphere. The most general polarization
state will be described by a distribution on the Poincaré
sphere. This is specially the case in the quantum domain
where fluctuations of the Stokes variables are unavoidable
because of the lack of commutation of the Stokes operators
�2.1� �3,8�.

In the quantum case there is no unique correspondence
between quantum states and polarization distributions. This
is due to the lack of commutation of basic quantum observ-
ables so that different ordering procedures lead to different
correspondences.

In this work we focus on polarization analogs of the so-
called s-ordered complex-amplitude distributions that em-
body the Wigner function. There is some consensus in that
the Wigner-Weyl correspondence is the one endowed with
the largest list of desirable properties �2�. Originally intro-
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duced for Cartesian variables �such as position and linear
momentum or field quadratures� the Wigner function has
been later adapted to other variables �such as angle and an-
gular momentum, or phase and number� �5,9,10�.

Concerning the polarization analogs of quadrature
s-ordered distributions we can follow two different ap-
proaches.

A. Marginal distributions

We can derive polarization distributions as marginals for
the polarization variables of the complex-amplitude
s-ordered distributions. This is essentially the procedure fol-
lowed in classical physics �11�, which has been further
elaborated for the quantum domain in Ref. �4� leading to

Ws��� = tr���s���� , �2.3�

where � is the density matrix,

�s��� =
1

4�
� s + 1

s − 1
	�S0−�·S�/2�1 +

1

1 − s
S0 +

1

1 − s
� · S	 ,

�2.4�

� is a three-dimensional real vector

� = 
sin � cos �

sin � sin �

cos �
� �2.5�

and �= �� ,�� represents the points of the Poincaré sphere in
terms of the polar angle � and the azimuthal angle �. We will
refer to Ws��� as marginal distributions. The case s=−1 has
been already applied to the study of the degree of polariza-
tion and polarization correlations in quantum optics �3�.

B. SU(2) distributions

On the other hand, we can consider phase-space represen-
tations for angular momentum variables derived from first
principles �5�

Ws��� = tr���s���� , �2.6�

where

�s��� = �
n=0

�

�s�n,�� , �2.7�

with

�s�n,�� =
1

4�
�
�=0

2j

�
m=−�

�

�
k,q=−j

j

2� + 1
�j,k;�,m�j,q�
�j, j ;�,0�j, j�s Y�,m���

	�j,k��j,q� , �2.8�

where j=n /2, �j1 ,m1 ; j2 ,m2 � j ,m� are the Clebsch-Gordan
coefficients, and Y�,m��� the spherical harmonics. We will
refer to Ws��� as SU�2� distributions.

C. Properties

With the definitions adopted above, both marginal and
SU�2� distributions are real and normalized

� d�Ws��� =� d�Ws��� = 1, �2.9�

being d�=sin �d�d�. They satisfy suitable transformation
laws under SU�2� transformations. These are energy conserv-
ing transformations which are linear on the complex ampli-
tudes. In our context they produce rotations of the Stokes
operators modifying the position and orientation of the po-
larization distribution on the Poincaré sphere but preserving
their form. They are produced by passive optical devices
such as free propagation, beam splitters, phase plates, and
mirrors �3,4,12�.

Polarization distributions allow us to compute statistical
properties by performing phase-space averages as in classical
statistical physics. For example, the mean value of a given
polarization observable A��� is

� d�A���Ws��� = �As�, � d�A���Ws��� = �As� ,

�2.10�

where the operators As, As corresponding to the function
A��� are

As =� d�A����s���, As =� d�A����s��� .

�2.11�

The converse task, i.e., the determination of the functions
corresponding to a given operator A, is slightly more in-
volved. Since �S ,S0�=0 polarization properties must be rep-
resented by operators A commuting with the total photon
number S0. In such a case we can associate with each A a
series of functions As�n ,��, As�n ,��, so that mean values
are computed in the form

�A� = �
n=0

� � d�A−s�n,��Ws�n,��

= �
n=0

�
4�

n + 1
� d�A−s�n,��Ws�n,�� , �2.12�

where

Ws�n,�� = tr���s�n,���, Ws�n,�� = tr���s�n,��� ,

�2.13�

As�n,�� = tr�A�̃s�n,���, As�n,�� = tr�A�s�n,��� ,

�2.14�

and �s�n ,�� are the restrictions of Eq. �2.4� to the subspace

of fixed total photon number n, while �̃s�n ,�� refers to the
dual of �s�n ,�� introduced in Ref. �4�.

By construction, these two families of distributions in-
clude suitable analogs of the Wigner function �s=0�, the P
function �s=1�, and the Q function �s=−1�.

Marginal and SU�2� distributions only coincide for s=
−1 �Q function�
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W−1��� = W−1��� = �
n=0

�
n + 1

4�
�n,����n,�� , �2.15�

where �n ,�� are the SU�2� coherent states �13�

�n,�� = �
m=0

n � n

m
	1/2�sin

�

2
	n−m�cos

�

2
	m

e−im��m�1�n − m�2.

�2.16�

For s
−1 we get that Ws��� and Ws��� become more and
more different as s→1, as suitably illustrated by the ex-
amples considered in the next section.

It can be appreciated in Eq. �2.15� that the Q function is
always positive for every state W−1���=W−1����0. The
universal positivity holds also when s�−1 for the marginal
distribution. More explicitly, the eigenvalues of ��n ,�� are
�4�

s�j,m� =
1

4�
�1 + 2

j + m

1 − s
	� s + 1

s − 1
	 j−m

, �2.17�

being j=n /2 and m=−j ,−j+1, . . . , j, which are all non-
negative s�j ,m��0 for s�−1. For the SU�2� distributions
the eigenvalues of �s�n ,�� are �4�

s�j,m� = �
�=0

2j
2� + 1

4�

�j,m;�,0�j,m�
�j, j ;�,0�j, j�s . �2.18�

In this case s�j ,m� can be negative for s�−1, as illustrated
in Fig. 1, where we have represented the minimum eigen-
value of both �s�n ,��, �s�n ,�� as functions of s for j
=n /2=1. Nevertheless, we can appreciate in Fig. 1 that the
negativity of s�j ,m� in Eq. �2.18� is very small. Because of
this we will consider s=−1 as an effective lower bound of s
for the analysis of the negativity of polarization distributions.
The upper bound for s is discussed in the next section.

III. NONCLASSICAL DEPTH

The only nonclassical feature of polarization distributions
is that they can take negative values or become more singu-

lar than a delta function. Accordingly, polarization states can
be considered as nonclassical when Ws����0 for some �
and s.

The amount of nonclassical character can be assessed by
the number of distributions that take negative values for the
same state, the so-called nonclassical depth �6� �other ap-
proaches can be found in Refs. �14,15��. More specifically,
we can take as a potential measure of nonclassical behavior
the quantity s̃ defined as the value of s that separates the
regions of positive �s� s̃� and negative �s
 s̃� distributions

Ws�s̃��� � 0, Ws
s̃��� � 0, �3.1�

with s�−1. Accordingly, the states with s̃=−1 are the states
with the largest nonclassical depth. An equivalent parameter
can be defined via Ws, leading in general to a different s̃.

It is convenient to restrict from above the range of values
of s. Otherwise, we might come to the conclusion that every
state is nonclassical. We can illustrate this idea with a simple
example for quadrature distributions. For every � there are
always definite values for s and a such that

� dxdyWs�x,y��x2 +
s − a

2
	 = �X2� −

a

2
, �3.2�

where X is the quadrature operator �and thus independent of
s� associated with the function x2+s /2. We can always
choose s and a such that s
a
2�X2�. In such a case x2

+ �s−a� /2 is a positive function and Eq. �3.2� implies
Ws�x ,y��0. Therefore, if we do not restrict the values of s
we might conclude that every state is nonclassical. For
s-ordered distributions it is usual to restrict the range of
variation of s so that if s̃�1 then the state is considered as
classical �6�.

For fixed s we can compare the amount of nonclassical
behavior of different states by simple measures combining
physical intuition with simplicity of calculation such as �7�

ds =� d���Ws���� − Ws���� =� d��Ws���� − 1

�3.3�

and similarly for Ws���.
We can consider also a slight modification of ds intended

to measure negativity as the distance between Ws��� and its
modulus �Ws����

Ds =� d��Ws��� − �Ws�����2 �3.4�

and equivalently for Ws���.
This differs from Eq. �3.3� by the square of the function to

be integrated. A similar approach has been already used to
compute some other optical properties such as visibility, de-
gree of polarization, and polarization correlations �3,4,16�.

Furthermore, a suitable combination of Ds and ds

FIG. 1. Minimum eigenvalue of �s�n ,�� �solid� and �s�n ,��
�dashed� as functions of s for j=n /2=1.
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As =
ds

2

Ds
�3.5�

provides a measure of the effective area of the Poincaré
sphere occupied by the negative part of Ws��� �17�. We can
note that ds and Ds depend on the area of the Poincaré sphere
where the distribution takes negative values and also on the
values that Ws and Ws take on these points. Roughly speak-
ing, ds, Ds represent a kind of probability of negative values
�being clear that any probabilistic interpretation is ruled out
precisely by the negativity�. On the other hand, As tends to
represent the area where the distribution takes negative val-
ues, irrespective of whether such values are large or small.

It is worth noting that by construction all the above mea-
sures are invariant under SU�2� transformations, i.e., they
take the same values for the states � and U�U†, where U is
any SU�2� transformation.

IV. NONCLASSICAL POLARIZATION STATES

In this section we examine the negativity of the polariza-
tion distributions corresponding to some relevant field states.

A. One-photon states

The subspace of states with a single photon shared by two
field modes is spanned by the product of number states

�1�1�0�2 = �1

0
	, �0�1�1�2 = �0

1
	 . �4.1�

In this basis we get �4�

�s��� =
1

4�
�1 +

2

1 − s
� · �	 �4.2�

and

�s��� =
1

4�
�1 + 3s+1� · �� , �4.3�

where � are the three Pauli matrices. Every one-photon den-
sity matrix can be expressed as

� =
1

2
�1 + r · �� , �4.4�

where r is a real vector with �r��1 so that the associated
distributions are of the form

Ws��� =
1

4�
�1 +

2

1 − s
� · r	 �4.5�

and

Ws��� =
1

4�
�1 + 3s+1� · r� . �4.6�

They take negative values provided that �s
1, where

�s =
2�r�
1 − s

, �s = �r�3s+1 �4.7�

for the marginal and SU�2� distributions, respectively, lead-
ing to

s̃ = 1 − 2�r�, s̃ = −
ln�3�r�2�

ln 3
, �4.8�

respectively. This result is illustrated in Fig. 2.
Note that when considering marginal distributions Ws���

all states are nonclassical polarization states, with the excep-
tion of identity r=0, since s̃�1 for all r�0. On the other
hand, when considering SU�2� distributions Ws��� all the
states with �r��1/3 would be classical.

In particular, for pure states �r�=1 we get s̃=−1 both for
the marginal and the SU�2� distributions, so that all one-
photon pure states have maximal nonclassical polarization
distribution.

Concerning ds, Ds, we get

ds = 2 sinh2�1

2
ln �s	, Ds =

��s − 1�3

6��s
. �4.9�

In Fig. 3 we have represented Ds=0 for the marginal and the
SU�2� distributions as functions of �r�, showing that the
negativity increases as � tends to be pure.

FIG. 2. The s̃ for one-photon states �4.4� as a function of �r� for
marginal �solid� and SU�2� �dashed� distributions.

FIG. 3. Plot of D0 for marginal �solid� and SU�2� �dashed� dis-
tributions as a function of �r� for one-photon states.
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In Fig. 4 we have represented ln Ds as a function of s for
pure states �r�=1. We can appreciate that the negativity in-
creases as s→1. This is a general behavior satisfied by all
the examples considered in this work.

We have discussed above that Ws���, Ws��� coincide for
s=−1, while their differences tend to increase as s→1. We
can measure the difference between Ws��� and Ws��� for
the same state by computing the distance

�s =� d��Ws��� − Ws����2 �4.10�

that for one-photon states becomes

�s =
�r�2

12�
� 2

1 − s
− 31+s	2

, �4.11�

which is represented in Fig. 5 for pure states �r�=1. The
difference between Ws��� and Ws��� increases as s in-
creases. This is a general behavior satisfied by all the ex-
amples considered in this work.

Finally, for this simple example we can compute the exact
area �s of the Poincaré sphere where the distributions
Ws���, Ws��� take negative values

�s = 2��1 −
1

�s
	 . �4.12�

In Fig. 6 we have represented both As and �s for the SU�2�
distributions as functions of �r�.

B. SU(2) coherent states

Since all SU�2� coherent states are related by SU�2� trans-
formations we can use the SU�2� invariance of the formalism
considering without loss of generality the simplest case
�n�1�0�2. The corresponding distributions are �4�

Ws�n,�� =
1

4��s − 1�n �s − cos ��n−1�s − n − �n + 1�cos �� ,

Ws�n,�� =
1

4�
�
�=0

n

�2� + 1�� n

2
,
n

2
;�,0�

n

2
,
n

2
��1−s�

P��cos �� ,

�4.13�

where P� are the Legendre polynomials. In Fig. 7 we have
represented the Wigner functions Ws=0��� and Ws=0��� for
total photon numbers n=1,2 ,3 as functions of the polar
angle �.

For the marginal distributions Ws��� we get s̃=−1 for all
n�0, since for 1
s
−1 the two factors in the first equation
in Eq. �4.13� change their sign at different values of �. This
implies that all the SU�2� coherent states would have maxi-
mal nonclassical depth.

Concerning the SU�2� distributions Ws���, for the lower
values of n we have always obtained s̃=−1 for all n�0 with
the exception of the cases listed in Table I.

In spite of this universal tendency to maximum nonclas-
sical depth, Fig. 7 suggests that the negativity decreases as n
increases. This is clearly confirmed by the plot of D0 as a
function of n in Fig. 8, where it can be appreciated that D0
→0 as n increases. Similar behavior is observed for ds, both
for marginal and SU�2� distributions. This is also the case of

FIG. 4. Plot of ln Ds as a function of s for marginal �solid� and
SU�2� �dashed� distributions for pure one-photon states �r�=1.

FIG. 5. Plot of the logarithm of the distance �s between Ws���
and Ws��� for pure one-photon states �r�=1.

FIG. 6. Plot of As �solid� and �s �dashed� as functions of �r� for
the marginal distribution of one-photon states. The unit for As and
�s is steradian.
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As for marginal distributions, while As for SU�2� distribu-
tions shows no clear trend.

On the other hand, it can be also appreciated in Fig. 7 that
W0��� and W0��� tend to coincide as n increases. This is
confirmed quantitatively by the computation of the distance
�s in Eq. �4.10�, which is represented in Fig. 9 as a function
of n.

At first sight, the nonclassical polarization properties of
SU�2� coherent states might be regarded as somewhat para-
doxical, since coherent states are often considered as ex-
amples of classical behavior. Nevertheless, there is a strong

reason supporting their nonclassical character: For every
SU�2� coherent state there is another SU�2� coherent state
orthogonal to it �centered at antipodal points of the Poincaré
sphere�. Using the SU�2� Wigner function their orthogonality
is expressed as

� d�W0���W0���� = 0, �4.14�

where W0���, W0���� are the corresponding Wigner func-
tions. Since the SU�2� coherent states are all connected by
SU�2� transformations we have that W0��� and W0���� are
the same function centered at two different points. Therefore,
the orthogonality implies that either W0���, W0���� are dis-
joint or, otherwise, they must take negative values. For low
n the overlap and negativity are large, while as n increases
the overlap decreases. This is consistent with the fact that
the negativity decreases when n increases, as illustrated in
Fig. 8.

C. Quadrature coherent states

Taking into account the SU�2� invariance we can compute
without loss of generality the polarization distributions for
the two-mode quadrature coherent states ���1�0�2 where
mode a2 is in the vacuum state. Since quadrature coherent
states are Poissonian superpositions of SU�2� coherent states
�3,18� we get

Ws��� = e−n̄�
n=0

�
n̄n

n!
Ws�n,��, Ws��� = e−n̄�

n=0

�
n̄n

n!
Ws�n,�� ,

�4.15�

where n̄= ���2 represents the mean number of photons and
Ws�n ,�� and Ws�n ,�� are the distributions �4.13� corre-
sponding to SU�2� coherent states.

TABLE I. Values of s̃ for SU�2� distributions of SU�2� coherent
states with even n.

n s̃

2 −0.7826

4 −0.9673

6 −0.9998

FIG. 7. Marginal �solid� and SU�2� �dashed� Wigner distribu-
tions for SU�2� coherent states at the north pole �n�1�0�2 and total
photon numbers n=1,2 ,3.

FIG. 8. Plot of D0 for the marginal �solid� and 5D0 for the SU�2�
�dashed� distributions for SU�2� coherent states as functions of n.
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For the marginal distribution it is possible to carry out the
above sum, leading to

Ws��� =
1

4�
�1 +

2n̄

1 − s
cos2 �

2
	e−2n̄ sin2��/2�/�1−s�,

�4.16�

which is always non-negative for all 1
s�−1.
In Fig. 10 we have represented the marginal and SU�2�

Wigner functions for a coherent state of mean number of
photons n̄=4. The marginal and SU�2� distributions are very
close and can hardly be distinguished. Nevertheless, there is
a significant difference, since the SU�2� Wigner function
takes negative values around �=� as illustrated by the inset
in Fig. 10 �19�.

The values of s̃ for the SU�2� distributions are shown in
Table II for n̄�20. They suggest that the nonclassical depth
increases as n̄ increases. However, the evaluation of D0 sug-
gests that the nonclassical polarization behavior occurs ex-
clusively for small values of n̄. This is illustrated in Fig. 11
where we have represented D0 for the SU�2� Wigner function

as a function of the mean number of photons n̄, showing that
the largest negativity occurs when n̄�5. A similar depen-
dence on n̄ is displayed by d0, while A0 shows no clear trend.

This result is relevant since quadrature coherent states are
often considered as examples of classical behavior. We can
recall that there are other phase-space formalisms that assign
negative distributions to quadrature coherent states �10,20�.

D. Twin number states �n‹1�n‹2

Another interesting class of field states is the twin number
states �n�1�n�2 which are closely related to nonclassical fea-
tures such as polarization squeezing �8�. In Fig. 12 we have
represented the Wigner functions for the states with n
=1,2 ,3, �all of them independent of the azimuthal angle ��
as functions of the polar angle �.

For the marginal distributions Ws we have obtained s̃=
−1 for all the cases examined. Concerning the SU�2� distri-
butions Ws, for low values of n we have obtained s̃=−1 with
the exception of n=2,4, for which s̃=−0.87,−0.99, respec-
tively.

Nevertheless, although the nonclassical depth s̃ is maxi-
mal for most n, the evaluation of Ds suggests that the non-
classical character increases as n increases, as illustrated in
Fig. 13. This is in sharp contrast to the behavior of SU�2�

TABLE II. Values of s̃ for quadrature coherent states for several
values of n̄.

n̄ s̃

2 0.36

4 −0.07

6 −0.24

8 −0.33

10 −0.38

12 −0.41

14 −0.44

16 −0.46

18 −0.48

20 −0.49

FIG. 9. Plot of the distance �s in Eq. �4.10� between the Wigner
functions W0��� and W0��� for SU�2� coherent states as a function
of n.

FIG. 10. Marginal �solid� and SU�2� �dashed� Wigner distribu-
tions for a quadrature coherent state centered at the north pole
���1�0�2 with n̄=4. The inset shows in detail the area around the
south pole where the SU�2� distribution takes negative values while
the marginal remains positive.

FIG. 11. Plot of D0 for the SU�2� polarization distribution of
quadrature coherent states as a function of the mean number of
photons n̄.
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coherent states, whose negativity decreases as n increases.
Furthermore, for the states �n�1�n�2 the difference between

W0��� and W0��� increases as n increases, as illustrated in
Fig. 14. This is also in sharp contrast to the behavior of
SU�2� coherent states for which W0��� and W0��� tend to
coincide as n increases.

V. OBSERVATION OF NEGATIVITY

In practical terms, the nonclassical polarization properties
implied by negative distributions should be revealed by mea-
surement outputs outside the classical range of variation for

the measured observable �such as negative mean values for
observables with positive phase-space representatives�. In
this section we examine whether there are observables A
with A����0 and �A��0.

The answer is affirmative since we can always choose
observables with a positive phase-space representative cen-
tered at the region where Ws����0 and with widths as nar-
row as desired. For example, for states taking negative val-
ues at the south pole of the Poincaré sphere, a suitable
observable revealing the negativity is

A��� =
k + 1

4�
sin2k �

2
, �5.1�

which is always positive, taking meaningful values exclu-
sively on a region around the south pole that becomes
smaller as k increases.

For one-photon states we have from �2.11�, �4.2�, and
�4.3� that the restriction to the one-photon subspace of the
quantum operators corresponding to A��� is

FIG. 12. Marginal �solid� and SU�2� �dashed� Wigner distribu-
tions for the states �n�1�n�2 for n=1,2 ,3.

FIG. 13. Plot of D0 for the marginal distribution �solid� and 3D0

for the SU�2� distribution �dashed� for the states �n�1�n�2 as func-
tions of n.

FIG. 14. Plot of the distance �0 in Eq. �4.10� between W0���
and W0��� for the states �n�1�n�2 as a function of n.
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As =
1

4�
�1 −

2

1 − s

k

k + 2
Sz	 ,

As =
1

4�
�1 − 3s+1 k

k + 2
Sz	 , �5.2�

for marginal and SU�2� distributions, respectively. Therefore,
the negativity of Ws and Ws can be easily revealed by
photon-number measurements. For example, for the state
�1�1�0�2 we get evidence of negative character of the polar-
ization distributions provided that

k 
 2
1 − s

1 + s
, k 


2
3s+1 − 1

�5.3�

for the marginal and the SU�2� distributions, respectively. A
similar approach can be considered for SU�2� and quadrature
coherent states. Further details can be found in Ref. �19�.

As a further example we consider the state �1�1�1�2. In this
case the negativity of the Wigner distributions s=0 can be
disclosed by a negative mean value for an observable with
positive distribution such as A���=cos2 �. The restriction of
the corresponding operators with s=0 to the two-photon sub-
space is

A0 =
1

5
�Sz

2 − 1� ,

A0 =
1

1210
Sz

2 +
10 − 4

310
, �5.4�

for the marginal and the SU�2� distributions, respectively,
with

�A0� = −
1

5
, �A0� =

10 − 4

310
� − 0.0883, �5.5�

respectively.

VI. CONCLUSIONS

Quantum systems with nonpositive polarization distribu-
tions can be identified as nonclassical polarization states. To
this end we have examined different polarization distribu-
tions and different measures of the amount of negativity. In
this regard, it seems that the nonclassical depth is rather in-
sensible and tends to its maximum value very often. Because
of this we have completed it by computing some other intui-
tive and simple measures of negativity in terms of the dis-
tance between the polarization distribution and its modulus.

We have found that SU�2� coherent states and twin photon
number states possess strong nonclassical polarization distri-
butions. While the negativity of the SU�2� coherent states
decreases as the number of photons increases the negativity
of twin photon number states increases as the number of
photons increases.

We have shown that quadrature coherent states display
nonclassical polarization properties. In comparison with pre-
vious proposals of nonclassical behavior for coherent states,
the approach presented in this work is conceptually much
more simple and suitable to be experimentally implemented
by simple photon number measurements.
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