Publication:
Nonclassicality in weak measurements

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2004-11-29
Authors
Johansen, Lars M.
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We examine weak measurements of arbitrary observables where the object is prepared in a mixed state and on which measurements with imperfect detectors are made. The weak value of an observable can be expressed as a conditional expectation value over an infinite class of different generalized Kirkwood quasiprobability distributions. "Strange" weak values for which the real part exceeds the eigenvalue spectrum of the observable can only be found if the Terletsky-Margenau-Hill distribution is negative or, equivalently, if the real part of the weak value of the density operator is negative. We find that a classical model of a weak measurement exists whenever the Terletsky-Margenau-Hill representation of the observable equals the classical representation of the observable and the Terletsky-Margenau-Hill distribution is non-negative. Strange weak values alone are not sufficient to obtain a contradiction with classical models. We propose feasible weak measurements of photon number of the radiation field. Negative weak values of energy contradict all classical stochastic models, whereas negative weak values of photon number contradict all classical stochastic models where the energy is bounded from below by the zero-point energy. We examine coherent states in particular and find negative weak values with probabilities of 16% for kinetic energy (or squared field quadrature), 8% for harmonic oscillator energy, and 50% for photon number. These experiments are robust against detector inefficiency and thermal noise.
Description
©2004 The American Physical Society
Keywords
Citation
[1] H. J. Kimble, M. Dagenais, and L. Mandel, Phys. Rev. Lett. 39, 691 (1977). [2] Y. Aharonov, D. Z. Albert, and L. Vaidman, Phys. Rev. Lett. 60, 1351 (1988). [3] L. M. Johansen, Phys. Rev. Lett. 93, 120402 (2004). [4] J. G. Kirkwood, Phys. Rev. 44, 31 (1933). [5] C. L. Mehta, J. Math. Phys. 5, 677 (1964). [6] Y. P. Terletsky, Zh. Eksp. Teor. Fiz. 7, 1290 (1937). [7] H. Margenau and R. N. Hill, Prog. Theor. Phys. 26, 722 (1961). [8] R. J. Glauber, Phys. Rev. 131, 2766 (1963). [9] E. C. G. Sudarshan, Phys. Rev. Lett. 10, 277 (1963). [10] U. M. Titulaer and R. J. Glauber, Phys. Rev. 140, B676 (1965). [11] M. Hillery, Phys. Lett. 111A, 409 (1985). [12] L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, New York, 1995). [13] V. V. Dodonov, J. Opt. B: Quantum Semiclassical Opt. 4, R1 (2002). [14] M. Hillery, Phys. Rev. A 35, 725 (1987). [15] C. T. Lee, Phys. Rev. A 44, R2775 (1991). [16] W. Vogel, Phys. Rev. Lett. 84, 1849 (2000). [17] T. Richter and W. Vogel, Phys. Rev. Lett. 89, 283601 (2002). [18] J. von Neumann, Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton, 1955). [19] F. Haake and D. F. Walls, Phys. Rev. A 36, 730 (1987). [20] A. M. Steinberg, Phys. Rev. A 52, 32 (1995). [21] A. M. Steinberg, Phys. Rev. Lett. 74, 2405 (1995). [22] L. Cohen, Phys. Lett. A 212, 315 (1996). [23] R. I. Sutherland, J. Math. Phys. 23, 2389 (1982). [24] L. Cohen and C. Lee, Found. Phys. 17, 561 (1987). [25] J. G. Muga, J. P. Palao, and R. Sala, Phys. Lett. A 238, 90 (1998). [26] L. M. Johansen, Phys. Lett. A 322, 298 (2004). [27] A. Luis, Phys. Rev. A 67, 064101 (2003). [28] Y. Aharonov, S. Popescu, D. Rohrlich, and L. Vaidman, Phys. Rev. A 48, 4084 (1993). [29] L. M. Johansen, Phys. Lett. A 329, 184 (2004). [30] D. F. Walls and G. J. Milburn, Quantum Optics (Springer-Verlag, Berlin, 1994). [31] M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, England, 1997). [32] G. Lachs, Phys. Rev. 138, B1012 (1965). [33] L. M. Johansen, J. Opt. B: Quantum Semiclassical Opt. 6, L21 (2004).
Collections