Publication:
The morphologies and masses of extremely red galaxies in the Groth Strip

Research Projects
Organizational Units
Journal Issue
Abstract
We present a new catalogue of EROs from the Groth Strip and study the relation between their morphology and mass. With a selection criterion F814W−K_s≥ 4 and K_s≤ 21.0 we find 102 EROs, over a survey area of 155 arcmin^2, leading to a surface density of 0.66 arcmin^−2. The photometric data include U, B, F606W, F814W, J, Ks bands. Morphologies are based on a by eye classification and we distinguish between three basic classes: compact objects, targets with a disc and/or a bulge component and irregular or merger candidates. An additional group consists of the few objects which could not be classified. The majority of our targets has either a very compact morphology (34 ± 6 per cent), or show more or less distinct disc components (43 ± 6 per cent). 14 ± 4 per cent are merger or irregulars and seven objects (approximately 9 per cent) could not be classified. We also study the dependence of structural parameters (effective radius: r_eff, Sérsic index: n) on morphological appearance. As expected, EROs that are either compact or show a distinct bulge component have smaller median effective radii (1.22 ± 0.14 kpc and 3.31 ± 0.53 kpc) than disc dominated (5.50 ± 0.51 kpc) or possible irregular galaxies or merger candidates (4.92 ± 0.14 kpc). More importantly, the Sérsic index changes from 2.30 ± 0.34 and 3.24 ± 0.55, to 1.03 ± 0.24 and 1.54 ± 0.40, respectively. As found in previous studies, most the EROs in our sample have redshifts between z= 1 and 2; however, compact EROs in our sample are found at redshifts as low as z= 0.4 and as high as z= 2.8; the latter qualify as well as distant red galaxies (DRGs). Disc-like EROs are also found up to z= 2.8; however, those with a bulge-disc structure are only seen at z < 1.5. For each of these EROs we determined the stellar mass and mean population age by fitting synthetic Bruzual (2007) spectra to the photometric spectral energy distributions, via χ^2 minimization. Mass estimates were obtained by assuming an exponentially declining star formation rate with a wide set of parameters, e.g. decay time, redshift of last star formation, metallicity and optical depth. Total stellar masses for our sample are in the range 9.1 < log(M/M_⊙) < 11.6. We cannot detect significant differences between the stellar mass distribution of the morphological classes. EROs with masses of log(M/M_⊙) > 11.0 dominantly show compact morphologies, but also include a significant number of sources with a disc morphology.
Description
© Wiley-Blackwell. © 2011 Royal Astronomical Society. This work was supported by the Consolider-Ingenio 2010 Programme grant CSD2006-00070: First Science with the GTC and by grants AYA2006-12955, AYA2009-11137 and AYA2010-21322-CO3-02 from the Spanish Ministry of Science and Innovation.
Unesco subjects
Keywords
Citation
Abraham R. G., van den Bergh S., Glazebrook K., Ellis R. S., Santiago B. X., Surma P., Griffiths R. E., 1996, ApJS, 107, 1 Afonso J., Mobasher B., Chan B., Cram L., 2001, ApJ, 559, L101 Alexander D. M., Vignali C., Bauer F. E., Brandt W. N., Hornschemeier A. E., Garmire G. P., Schneider D. P., 2002, AJ, 123, 1149 Balcells M., Cristobal Hornillos D., Prieto M., Guzmán R., Gallego J., Serrano A., Cardiel N., Pelló R., 2002, Newsletter Isaac Newton Group Telesc., 6, 11 Bolzonella M., Miralles J.-M., Pello R., 2000, A&A, 363, 476 Brusa M. et al., 2005, A&A, 432, 69 Bruzual A. G., 2007, in Vazdekis A., Peletier R. F., eds, Proc. IAU Symposium 241, On TP-AGB Stars and the Mass of Galaxies, Cambridge Univ. Press, Cambridge p. 125 Bruzual G., Charlot S., 2003, MNRAS, 344, 1000 Calzetti D., Armus L., Bohlin R. C., Kinney A. L., Koornneef J., StorchiBergmann T., 2000, ApJ, 533, 682 Cappellari M. et al., 2009, ApJ, 704, L34 Cenarro A. J., Trujillo I., 2009, ApJ, 696, L43 Cimatti A. et al., 2002, A&A, 391, L1 Conselice C. J., 2006, ApJ, 638, 686 Conselice C. J., Bundy K., U V., Eisenhardt P., Lotz J., Newman J., 2008, MNRAS, 383, 1366 Cristobal Hornillos D., Balcells M., Prieto M., Guzmán R., Gallego J., Cardiel N., Serrano A., Pelló R., 2003, ApJ, 595, 71 Daddi E. et al., 2005, ApJ, 631, L13 De Lucia G., Springel V., White S. D. M., Croton D., Kauffmann G., 2006, MNRAS, 366, 499 Dekel A. et al., 2009, Nat, 457, 451 Dekel A., Sari R., Ceverino D., 2009, ApJ, 703, 785 Desai V. et al., 2007, ApJ, 660, 1151 de Vaucouleurs G., 1948, Ann. Astrophys., 11, 247 Domínguez Palmero L., Balcells M., Erwin P., Prieto M., Cristobal Hornillos D., Eliche Moral M. C., Guzmán R., 2008, A&A, 488, 1167 Dressler A., Lynden Bell D., Burstein D., Davies R. L., Faber S. M., Terlevich R., Wegner G., 1987, ApJ, 313, 42 Eliche Moral M. C., Balcells M., Prieto M., García Dabo C. E., Erwin P., Cristobal Hornillos D., 2006, ApJ, 639, 644 Eliche Moral M. C. et al., 2010, A&A, 519, A55+ Ellis R. S., Abraham R. G., Dickinson M., 2001, ApJ, 551, 111 Elsner F., Feulner G., Hopp U., 2008, A&A, 477, 503 Elston R., Rieke G. H., Rieke M. J., 1988, ApJ, 331, L77 Elston R., Rieke M. J., Rieke G. H., 1989, ApJ, 341, 80 Fontana A. et al., 2004, A&A, 424, 23 Fontana A. et al., 2009, A&A, 501, 15 Fu H., Stockton A., Liu M., 2005, ApJ, 632, 831 Gilbank D. G., Smail I., Ivison R. J., Packham C., 2003, MNRAS, 346, 1125 Glazebrook K. et al., 2004, Nat, 430, 181 González Pérez V., Baugh C. M., Lacey C. G., Almeida C., 2009, MNRAS, 398, 497 Groth E. J., Kristian J. A., Lynds R., O’Neil E. J., Jr, Balsano R., Rhodes J., 1994, BAAS, 26, 1403 Hayashi M., Shimasaku K., Motohara K., Yoshida M., Okamura S., Kashikawa N., 2007, ApJ, 660, 72 Hopkins P. F. et al., 2009, MNRAS, 397, 802 Hu E. M., Ridgway S. E., 1994, AJ, 107, 1303 Huertas Company M. et al., 2008, A&A, 478, 971 Im M. et al., 2002, ApJ, 571, 136 Kassin S. A. et al., 2007, ApJ, 660, L35 Kauffmann G., White S. D. M., Guiderdoni B., 1993, MNRAS, 264, 201 Kitzbichler M. G., White S. D. M., 2006, MNRAS, 366, 858 La Barbera F., Busarello G., Merluzzi P., de la Rosa I. G., Coppola G., Haines C. P., 2008, ApJ, 689, 913 Labbé I. et al., 2005, ApJ, 624, L81 Longhetti M., Saracco P., 2009, MNRAS, 394, 774 López Sanjuan C. et al., 2009, ApJ, 694, 643 Maraston C., 2005, MNRAS, 362, 799 Moustakas L. A. et al., 2004, ApJ, 600, L131 Papovich C., 2006, New Astron. Rev., 50, 134 Peng C. Y., Ho L. C., Impey C. D., Rix H., 2002, AJ, 124, 266 Pozzetti L., Bruzual A. G., Zamorani G., 1996, MNRAS, 281, 953 Prieto M., Balcells M., Domínguez Palmero L., Cristobal Hornillos D., Erwin P., Eliche Moral C., Abreu D., 2005, Revista Mexicana Astron. Astrofis. Conf. Ser., 24, 270 Ratnatunga K. U., Griffiths R. E., Ostrander E. J., 1999, AJ, 118, 86 Reda F. M., Forbes D. A., Hau G. K. T., 2005, MNRAS, 360, 693 Ricciardelli E., Trujillo I., Buitrago F., Conselice C. J., 2010, MNRAS, 406, 230 Roche N. D., Almaini O., Dunlop J., Ivison R. J., Willott C. J., 2002, MNRAS, 337, 1282 Roche N. D., Dunlop J., Almaini O., 2003, MNRAS, 346, 803 Sarajedini V. L. et al., 2006, ApJS, 166, 69 Shen S., Mo H. J., White S. D. M., Blanton M. R., Kauffmann G., Voges W., Brinkmann J., Csabai I., 2003, MNRAS, 343, 978 Simard L. et al., 2002, ApJS, 142, 1 Somerville R. S., Primack J. R., Faber S. M., 2001, MNRAS, 320, 504 Somerville R. S. et al., 2004, ApJ, 600, L135 Stockton A., McGrath E., Canalizo G., 2006, ApJ, 650, 706 Tinsley B. M., Gunn J. E., 1976, ApJ, 203, 52 Treu T. et al., 2005, ApJ, 633, 174 Trujillo I. et al., 2006, MNRAS, 373, L36 Trujillo I., Conselice C. J., Bundy K., Cooper M. C., Eisenhardt P., Ellis R. S., 2007, MNRAS, 382, 109 Tully R. B., Fisher J. R., 1977, A&A, 54, 661 Vaduvescu O., McCall M. L., 2008, A&A, 487, 147 Weiner B. J. et al., 2005, ApJ, 620, 595 White S. D. M., Rees M. J., 1978, MNRAS, 183, 341 Yan L., Thompson D., 2003, ApJ, 586, 765 Yan H. et al., 2004, ApJ, 616, 63
Collections