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Abstract 

In this paper we present a vectorial Darboux transformation, in terms of ordinary determinants, for the supersymmetric 

extension of the Korteweg-de Vries equation proposed by Manin and Radul. It is shown how this transformation reduces 
to the Korteweg-de Vries equation. Sohton type solutions are constructed by dressing the vacuum and we present some 

relevant plots. 

1. Introduction 

The Korteweg-de Vries (KdV) equation was em- 
bedded in a supersymmetric framework for the first 
time by Manin and Radul in [ 141. Since then a num- 
ber of integrable equations have been extended in 
this way. The role of the KdV equation and its Vira- 
soro constraints in two dimensional quantum gravity 
[4,6,7] lead the group of Alvarez-Gaume to search 
for analogous structures for supersymmetric two di- 
mensional quantum gravity [ 1,2]. In turn, this moti- 
vated the study of Virasoro constraints for the super- 
symmetric Kadomtsev-Petviashvilii (KP) hierarchies 
available [ 131, which is connected with the study of 
additional symmetries of these hierarchies [ 13,5,17]. 
These results indicated that the supersymmetric exten- 
sions of the KdV equation, in particular the Manin- 
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Radul super KdV (MRSKdV) , might be relevant in 

the study of susy 2d quantum gravity. 
The search of solutions of the Manin-Radul super 

KP started with the work of of Radul [ 161 on algebro- 

geometric type solutions. Then in [ 181, from a Sato 
Grassmannian approach, the construction of solutions 

was outlined, nevertheless one can not find explicit 
examples in this paper. Recently in [ 91 some explicit 
solutions were obtained. 

The MRSKdV system is defined in terms of three 
independent variables 4, x, t, where 6 E C, is an odd 
supernumber, and x, t E Cc are even supernumbers, 
and two dependent variables CX( 9-, X, t) , u( 4, x, t), 
where a! is an odd function taking values in Ca and u 
is even function with values in CC. A basic ingredient 
is a superderivation defined by D := & + I%,. The 
system is 

C?!r = f (aXXX + 3CaDcu)x + 6((uu),), 

uy = ;(uxxx + 6~24, + 3a,Du + 34Dux) >, (1) 
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where we use the notation fX := Jf/& and ft := do not include them here). We end with some conclu- 

aflat. sions and remarks in Section 4. 

The following linear system for the wave function 
51, (6, x, t) , that takes values in the Grassmann algebra 

A=&@&, 2. Vectorial Darboux transformation 

(2) 

where the spectral parameter A E CC is an even super- 
number, has as its compatibility condition Eqs. (I), 
and therefore it can be considered as a Lax pair for it. 

The linear system (2) is of a scalar nature, h E CC, 

$(19, x, t) E A. Nevertheless, it is possible to give a 
vector extension of these linear problem. Indeed, we 

may replace A by an arbitrary linear Grassmann space 
E over A and take b as an &-valued eigenfunction, then 
the spectral parameter can be taken as L E L(E,$ @ 
L( El), an even operator. 

Our aim in this paper is to extend a well known 
tool, Darboux transformations, in integrable system 

theory to the supersymmetric case. This tool is a well 
established scheme in dealing with integrable equa- 
tions and its solutions [ 151. Given an integrable equa- 

tion and its Lax pair the Darboux technique consists 

of transforming simultaneously both fields and wave 
functions. For the KdV equation the Lax pair is essen- 
tially the Schrodinger equation, and this was precisely 
the equation where Darboux developed his technique. 
On the one hand, recently one of the authors extended 
the standard Darboux transformations to the super- 

symmetric KdV, [ lo]. On the other hand, the other 
author has been involved recently in generalizing the 
standard Darboux techniques to a vectorial Darboux 
transformation, [ 8,121. 

Namely, the linear system 

b,,+aDb+ub-Lb=O, 

b, - +(Db,) - Lb, - ;ub, + +,Db + $u,b = 0, 

(3) 

has as its compatibility condition the MRSKdV system 

(1). 
Notice that Eqs. ( 1) is also the compatibility con- 

dition of adjoint linear system: 

In this paper we present a vectorial Darboux trans- 

formation for the MRSKdV, this transformation is rep- 
resented in terms of ordinary determinants of an even 
operator. Nevertheless, we do obtain essentially su- 
persymmetric solutions. Indeed any arbitrary solution 
can be used as seed solution to dress, and obtain there- 
fore large families of new solutions having the seed 
solution as background. 

+ +(a,P) + ;uxP = 0, (4) 

where p(S, x, t) E &* is a linear function on the 

supervector space E, and M E L( &g) 83 L( &L) . 

The layout of the paper is as follows. In $2 we in- 
clude the main results of the paper, namely the vecto- 
rial Darboux transformation for the MRSKdV equa- 
tion ( 1). There, we also consider the reduction to the 
KdV equation. Next, in $3 we study some explicit so- 
lutions selected among the large classes of explicit so- 
lutions offered by this method. In particular, we dress 
the vacuum solution to obtain soliton type solutions. 
Here we also give some plots showing the behaviour 
of the field LY (as the ones for the u are similar we 

In order to construct Darboux transformation for 
these linear systems we need to introduce an even op- 
erator, say V, to this end we assume that b( 6, x, t) E 
&Q is an even vector and /3 E &< an odd functional. 

Proposition I. Let b(6, x, t) and /3(S, x, t) satisfy 
Eqs. (3) and (4)) respectively. Then, there exists a 
potential operator V( 4, x, t) E L( 8~) 69 L( El) given 

by 

DV=b@& 

v, = Lv, + V,M - D(b, @& + ;uDV) - &DV 
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+;a(b23px-bXc3P) 
such that 

(5) 

LV-VM=D(bx@/3-bb/3P,)-ab@/3. (6) 

Proof: A direct calculation shows that DV, = (DV) t 
holds. We proceed by checking that the identity 

D(LV-VM-D(b,@P-b@A) -tab@/% 

=o 

holds. A tedious but straightforward calculation shows 

= 0.0 

Now, we state the main result of the paper. 

Theorem I. Let b(6, x, t) E &g be an even vector 
satisfying Eq. (3), /3(S, x, t) E E,” an odd functional 

solving Eq. (4) and V E L( &Q) &( El) a non singular 
even operator, det &dy + 0, defined in terms of the 
compatible Eqs. (5) and (6). Then, the objects 

g:=V-‘b, b:+V-t, 2:=&f, fit=,!, 

&=a-2D31ndetv 

fi=u+2&DlndetV+2 (“‘:$,det”),, 

where Q is an operator with associated supermatrix 
obtained from the corresponding one of V by replacing 
the j-th column by b, satisfy the Eqs. (3) and (4) 
whenever the unhatted variables do. Thus, B and ii are 
new solutions of the MRSKdV ( 1). 

Pro03 Is a tedious but straightforward calculation to 
check that 

h=V-‘b, fi=pV-‘, 2=&f, &=L 

&=a-2(p, V-lb),, 

2 = u + Z(Dp, V-lb), + 2cx(p, V-lb) 

+ 2(P, V-‘b)(p, V-lb),, 

satisfy Eqs. (3) and (4). Observe that form DV = 
b @ p one has the relation Tr( DV . V-* ) = (p, V-lb), 
and therefore 

(/?,V-‘b) = Dlndety 

where we are using standard traces and determinants. 

Notice also that, using Cramer’s rule, we have 

lop v-l bj _ Cj OPi det Y 
detV * 

These three remarks lead to the desired result. 0 

Reduction to KdV The MRSKdV system ( 1) re- 
duces to the KdV equation when cy = 0. Our Darboux 
transformation is in fact compatible with this reduc- 
tion, giving in this manner Darboux transformation 

for the KdV equation. To see this let us first note that 
with the splitting b( 6, x, t) = bo(x, t) + 6bl (x, t) , 

P(S, x, t) = Pl(x, t) + SPo(x, t> and V(6,x, t) = 

VO(X, t) + 66 (x, t), Eq. (5) reads 

Vr =bo@Pl, Vex = bl @ PI + bo 8 PO 

The linear systems (3) and (4) with LY = 0 are 

b, + ub = Lb, bt = Lb, + ;ub, - &b 

and 

Pxl+ UP = PM, Pi = PnM + + - $9 

To proceed further, we assume ,& = bI = 0 so that 
VI = 0. Then, our potential satisfies 

v,,x = bo @PO> 

In this case, our Darboux transformation tells us 

& = -2fi(fio, V,-‘bo)x, 

ii = u + 2(&,, V,-‘bo), 

and since &Db = 0 we conclude that ii satisfies the 
equations 

&, - i& - ;a& f && = 0, 

and therefore is a new solution of the KdV equation. 
Notice that here we have a subtle point, observe that & 
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is not zero but in turn does not appear in the evolution 
equations because its particular structure. 

Observe also that using the formula Tr( 6,X. V,-’ ) = 
(Indet &)X, the transformation for field u can be 

rewritten neatly as 

ii = u + 2(lndet Vo)xx, 

which a standard form for the solutions of the KdV 

equation [ 31. 

3. Exact solutions of the MRSKdV 

Among the large classes of solutions provided by 

the just presented vectorial Darboux transformation, 
in this section we select some relevant example by 
dressing the vacuum solution cx = 0, u = 0. In doing 

so we obtain solutions, that for simplicity we denote 
by cr, u erasing the hat, of the MRSKdV equation ( 1) 

which can be considered as a superextension of the 

soliton solutions of KdV. 
Inserting a = u = 0 in the linear systems one gets 

the equations for b 

b nx = Lb, bt = Lb,, 

An = PM, Pt = P&f. 

For simplicity we take L, M as diagonal even matri- 

ces, L = diag(tT, . . * ,k’z) andM=diag(mf,...,mi), 

e,j,Wlj E Cc, j = l,..., n. Then, the functions b and 

p have the following form: 

bi = ci,+ exp(vi) + ci,- exp(-vi), 

fl,j = K,j,+ eXP(c.j> -‘r Kj,- eXP(-cfj> 

wherevi(x,t) :=Ci(x+@t) andSj(x,t) :=mj(x+ 
m+). 

The operator V, whenever (e; - rnf)body # 0 for 
all i, j, is determined by the constraint (6), namely 

where 

qij = -&( Ci,_ lTXp( -vi) 

-ci,+exP(77i))(K,i,-eXp(-5j) +Kj,+eXp(cj)) 

+ m.j(Ci,- eXP(rli) 

+Ci,+eXP(%))(Kj,-eXP(cj) - Kj,+eXP(tj):j)) 

and Qt = Ci,+ (8) and Kj,+ = Kj,+ (8). 

The expression can be made explicitly by means of 
substitutions 

Ci,f = c;* + 6ci,*, Kj,% = Kj,* f ‘8Kz*, 

where the superfix indicate the parities of the variables. 
Indeed, we have 

$= & ((4+4+ -I- C:,+Ki,+) eXP(% f Sj> 

- (L!,_Ki_ + Ct_ Kt_) eXp( -vi - t$j)) 

+ & ((CL+KL + C?,+Kz-.) eXp(% - 8j) 

- (C:,-Kj,+ •k Ct_Kz+) eXp(-(Ti -[j))) 

and 

4; = ct+Kj,+ exp( (vi+(j) ) f$_K~,_ eXP( -vi--r$j) 

+CF--Kj,+ eXP(-(Vi-tj)> +Cf+Kj,- eXP(r)i-cj> 

AS a particular example one can pick bi as above 
and pj = Kj + fit$, which requires mj = 0. In this 
case, the potential 1s 

xj = -+!,o 

ei .I t,+ 

- Kid,+> eXP(?l.j> 

+ (KjC!,_ - KyCF_) eXp( -7j’i) 

+%K~(C~+eXP(vi) +cf_ exp(-vi)) 

TO illustrate this family of solutions we shall con- 
sider the simplest case of a one dimensional space & 
(for simplicity we omit the index 1 next). Hence, we 
have 

1 
v=-((K°Co 

e 
+ - K’C:) eXp(rl) 

+ (K’& - K’C:) eXp( -7,‘) 

+8eK1(C;eXp(7j) +c!!.exp(-7)) 

To invert the operator V, we have to separate its body 
from its soul. We choose the supernumbers K”, l, c$ E 
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@ to have vanishing soul, so that the potential operator 
V takes the following form: 

v= +Xl,+ vsoul) 

where &,dy := fc”(ctexp(q) - c%exp(-7)) and 
V soul := d(--ci exp(q) + cl exp( -7) - &SO), we 
notice that b = bo + 6bl with bo = ctexp(r]) + 

c%exp(-v) and bl =c:exp(v) +cLexp(-7). 
The constitutive elements for our solution are now 

(P, V-4 = W& - 2,eK*K’(cy_ - c”-c:> 

( Vbodyj2 
9 

(D/3, V-lb) = IC’~& 

&OK’ 
- -----(-c:co+exp(2~) + c!_cO_ exp(-2r]) 

(vbody>2 

- 1 0 
8lKOK’ 

c+c_ + c’co,> + ~vbody~2 (24~5 - tb i > 

It is easy to see that this solution can be consid- 
ered as a supersymmetric extension of the soliton so- 
lution of the KdV equation. In fact, the constants can 
be chosen in such a way that the functions depend- 
ing solely on X, t appearing as multiplicative coeffi- 
cients are exponentially localized in x and travel with 

constant speed. Moreover, the KdV soliton solution 
appears as a particular coefficient, ( bO/Vbody)x. Thus, 
our solution can be considered as a supersymmetric 
deformation of the standard KdV soliton. 

Wewritea(a,x,t) =P(s)f(x,t)-~KIKog(~,t) 
and we plot the functions f and g. The function f, 
which is plotted in Fig. 1, is just a KdV 1-soliton 
solution while g, plotted in Fig. 2, is a exponentially 
localized regular solution that travels with constant 
speed, now its shape is more involved that in the KdV 
soliton. 

4. Conclusions and remarks 

We have constructed a Darboux transformation of 
a vector nature for the Manin-Radul supersymmetric 
KdV system. We have further shown that our Darboux 
transformation can be reduced to the KdV equation 
and is very effective when exact solutions are needed. 
The vectorial Darboux transformation is given in terms 

Fig. 1. The function f(x, t) plotted in the X, t plane, is just the 
standard I-soliton of the KdV equation. 

Fig. 2. The function g(n, t) plotted in the X, t plane, it represents 
a exponentially localized regular solution in x that travels with 
constant speed. 

of solutions of the Lax pair and its adjoint which have 
a well defined and opposite parities. This implies that 
the Darboux operator is even and that the new solu- 
tion can be expressed in terms of ordinary determi- 
nants. However, this absence of superdetemrinants is 
not a drawback because the proposed technique gives 
an efficient method of construction of genuine super- 

symmetric solutions. 
We further remark that the basic Darboux transfor- 

mations considered in [ lo] can be iterated so that the 
Crum type transformations may be obtained. In this 
case, the transformations will be represented in terms 
of superdeterminants of certain super Wronski matri- 
ces. This and other related results will be presented 
elsewhere, [ 111. 
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