Publication:
Irreversible processes without energy dissipation in an isolated Lipkin-Meshkov-Glick model

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2015-07-02
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
For a certain class of isolated quantum systems, we report the existence of irreversible processes in which the energy is not dissipated. After a closed cycle in which the initial energy distribution is fully recovered, the expectation value of a symmetry-breaking observable changes from a value differing from zero in the initial state to zero in the final state. This entails the unavoidable loss of a certain amount of information and constitutes a source of irreversibility. We show that the von Neumann entropy of time-averaged equilibrium states increases in the same magnitude as a consequence of the process. We support this result by means of numerical calculations in an experimentally feasible system, the Lipkin-Meshkov-Glick model.
Description
© 2015 American Physical Society. We thank O. Marty for useful discussions. The work was supported by a grant by the Spanish Government for research Project No. FIS2012-35316, an Alexander von Humboldt Professorship, the EU Integrating Project SIQS, and the EU STREP project EQUAM. Part of the calculations of this work were performed in the high-capacity cluster for physics, funded in part by Universidad Complutense de Madrid and in part with Feder funding. This is a contribution to the Campus of International Excellence of Moncloa, CEI Moncloa.
UCM subjects
Unesco subjects
Keywords
Citation
[1] C. Jarzynski, Annu. Rev. Cond. Matter Phys. 2, 329 (2011); M. Campisi, P. Hänggi, and P. Talkner, Rev. Mod. Phys. 83, 771 (2011). [2] P. Talkner, P. Hänggi, and M. Morillo, Phys. Rev. E 77, 051131 (2008). [3] L. Szilard, Z. Phys. A 53, 840 (1929). [4] R. Landauer, IBM J. Res. Dev. 5, 183 (1961). [5] T. Sagawa and M. Ueda, Phys. Rev. Lett. 104, 090602 (2010). [6] J. M. Horowitz and H. Sandberg, New. J. Phys. 16, 125007 (2014). [7] A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalattore, Rev. Mod. Phys. 83, 863 (2011). [8] M. Rigol, V. Dunjko, V. Yurovsky, and M. Olshanii, Phys. Rev. Lett. 98, 050405 (2007). [9] R. Puebla, A. Relaño, and J. Retamosa, Phys. Rev. A 87, 023819 (2013). [10] R. Puebla and A. Relaño, Europhys. Lett. 104, 50007 (2013). [11] T. Zibold, E. Nicklas, C. Gross, and M. K. Oberthaler, Phys. Rev. Lett. 105, 204101 (2010). [12] C. Gross, T. Zibold, E. Nicklas, J. Esteve, and M. K. Oberthaler, Nature (London) 464, 1165 (2010). [13] H. J. Lipkin, N. Meshkov, and A. J. Glick, Nucl. Phys. 62, 188 (1965). [14] J. Vidal, G. Palacios, and R. Mosseri, Phys. Rev. A 69, 022107 (2004); S. Dusuel and J. Vidal, Phys. Rev. Lett. 93, 237204 (2004); P. Ribeiro, J. Vidal, and R. Mosseri, ibid. 99, 050402 (2007); ,Phys. Rev. E 78, 021106 (2008). [15] A. Relaño, J. M. Arias, J. Dukelsky, J. E. García Ramos, and P. Pérez Fernández, Phys. Rev. A 78, 060102(R) (2008); P. Pérez Fernández, A. Relaño, J. M. Arias, J. Dukelsky, and J. E. García Ramos, ibid. 80, 032111 (2009). [16] T. Caneva, R. Fazio, and G. E. Santoro, Phys. Rev. B 78, 104426 (2008). [17] A. Polkovnikov, Phys. Rev. Lett. 101, 220402 (2008). [18] G. E. Crooks, J. Stat. Phys. 90, 1481 (1998); ,Phys. Rev. E 60, 2721 (1999). [19] P. Reimann and M. Kastner, New. J. Phys. 14, 043020 (2012). [20] A. J. Roncaglia, F. Cerisola, and J. P. Paz, Phys. Rev. Lett. 113, 250601 (2014). [21] A. Polkovnikov, Ann. Phys. (NY) 326, 486 (2011). [22] M. Srednicki, Phys. Rev. E 50, 888 (1994). [23] M. Rigol, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008). [24] K. Muruyama, F. Nori, and V. Vedral, Rev. Mod. Phys. 81, 1 (2009).
Collections