Publication:
Virial coefficients and demixing in the Asakura-Oosawa model

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2015-01-07
Authors
López de Haro, Mariano
Santos, Andrés
Yuste, Santos B.
Fiumara, Giacomo
Saija, Franz
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Institute of Physics
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The problem of demixing in the Asakura-Oosawa colloid-polymer model is considered. The critical constants are computed using truncated virial expansions up to fifth order. While the exact analytical results for the second and third virial coefficients are known for any size ratio, analytical results for the fourth virial coefficient are provided here, and fifth virial coefficients are obtained numerically for particular size ratios using standard Monte Carlo techniques. We have computed the critical constants by successively considering the truncated virial series up to the second, third, fourth, and fifth virial coefficients. The results for the critical colloid and (reservoir) polymer packing fractions are compared with those that follow from available Monte Carlo simulations in the grand canonical ensemble. Limitations and perspectives of this approach are pointed out.
Description
© 2015 AIP Publishing LLC. M.L.H., A.S., and S.B.Y. acknowledge the financial support of the Spanish Government through Grant No. FIS2013-42840-P and the Junta de Extremadura (Spain) through Grant No. GR10158 (partially financed by FEDER funds). Thanks are also due to Professor Bob Evans for suggesting this problem to us and for rich and interesting discussions and a very fruitful exchange of correspondence.
UCM subjects
Unesco subjects
Keywords
Citation
1. Theory and Simulation of Hard-Sphere Fluids and Related Systems, Lectures Notes in Physics, edited by A. Mulero (Springer-Verlag, Berlin, 2008), Vol. 753. 2. D. Frenkel, J. Phys.: Condens. Matter 6, A71 (1994). 3. T. Biben and J.-P. Hansen, Physica A 235, 142 (1997). 4. S. Asakura and F. Oosawa, J. Chem. Phys. 22, 1255 (1954). 5. S. Asakura and F. Oosawa, J. Polym. Sci. 33, 183 (1958). 6. A. Vrij, Pure Appl. Chem. 48, 471 (1976). 7. K. Binder, P. Virnau, and A. Statt, J. Chem. Phys. 141, 140901 (2014). 8. A. P. Gast, C. K. Hall, and W. B. Russel, J. Colloid Interface Sci. 96, 251 (1983). 9. A. A. Louis, R. Finken, and J. P. Hansen, Phys. Rev. E 61, R1028 (2000). 10. F. Lo Verso, D. Pini, and L. Reatto,J. Phys.: Condens. Matter 17, 771 (2005). 11. H. N. W. Lekkerkerker, W. K. Poon, P. N. Pusey, A. Stroobants, and P. B. Warren, Europhys. Lett. 20, 559 (1992). 12. S. M. Ilett, A. Orrock, W. C.-K. Poon, and P. N. Pusey, Phys. Rev. E 51, 1344 (1995). 13. M. Fasolo and P. Sollich, J. Phys.: Condens. Matter 17, 797 (2005). 14. M. Fasolo and P. Sollich, J. Chem. Phys. 122, 074904 (2005). 15. M. Schmidt, H. Lowen, J. M. Brader, and R. Evans, Phys. Rev. Lett. 85, 1934 (2000). 16. M. Schmidt, H. Lowen, J. M. Brader, and R. Evans,J. Phys.: Condens. Matter 14, 9353 (2002). 17. P. Hopkins and M. Schmidt, J. Phys.: Condens. Matter 22, 325108 (2010). 18. M. Dijkstra, J. M. Brader, and R. Evans,J. Phys.: Condens. Matter 11, 10079 (1999). 19. M. Dijkstra, R. van Roij, and R. Evans, J. Chem. Phys. 113, 4799 (2000). 20. J. M. Brader, R. Evans, and M. Schmidt, Mol. Phys. 101, 3349 (2003). 21. E. J. Meijer and D. Frenkel, Phys. Rev. Lett. 67, 110 (1991). 22. E. J. Meijer and D. Frenkel, J. Chem. Phys. 100, 6873 (1994). 23. T. Biben, P. Bladon, and D. Frenkel, J. Phys.: Condens. Matter 8, 10799 (1996). 24. P. G. Bolhuis, A. A. Louis, and J.-P. Hansen, Phys. Rev. Lett. 89, 128302 (2002). 25. J. Dzubiella, C. N. Likos, and H. Löwen, J. Chem. Phys. 116, 9518 (2002). 26. R. L. C. Vink and J. Horbach, J. Chem. Phys. 121, 3253 (2004). 27. R. L. C. Vink and J. Horbach, J. Phys.: Condens. Matter 16, S3807 (2004). 28. R. L. C. Vink, J. Horbach, and K. Binder, Phy. Rev. E 71, 011401 (2005). 29. F. Lo Verso, R. L. C. Vink, D. Pini, and L. Reatto, Phy. Rev. E 73, 061407 (2006). 30. A. Fortin, E. Sanz, and M. Dijkstra, Phy. Rev. E 78, 041402 (2008). 31. T. W. Rosch and J. R. Errington, J. Chem. Phys. 129, 164907 (2008). 32. J. Zausch, P. Virnau, K. Binder, J. Horbach, and R. L. C. Vink,J. Chem. Phys. 130, 064906 (2009). 33. D. J. Ashton, N. B. Wilding, R. Roth, and R. Evans, Phys. Rev. E 84, 061136 (2011). 34. M. A. Annunziata and A. Pelissetto, Mol. Phys. 109, 2823 (2011). 35. D. J. Ashton and N. B. Wilding, J. Chem. Phys. 140, 244118 (2014). 36. L. Rovigatti, N. Gnan, A. Parola, and E. Zaccarelli, Soft Matter (2015). 37. M. López de Haro and C. F. Tejero, J. Chem. Phys. 121, 6918 (2004). 38. M. López de Haro, A. Malijevský, and S. Labík, Collect. Czech. Chem. Commun. 75, 359 (2010). 39. M. López de Haro, C. F. Tejero, and A. Santos, J. Chem. Phys. 138, 161104 (2013). 40. A. Y. Vlasov and A. J. Masters, Fluid Phase Equilib. 212, 183 (2003). 41. E. Z. Hamad, J. Chem. Phys. 105, 3222 (1996). 42. R. Blaak, Mol. Phys. 95, 695 (1998). 43. S. Labík and J. Kolafa, Phys. Rev. E 80, 051122 (2009); Erratum 84, 069901 (2011). 44. I. Urrutia, Phy. Rev. E 84, 062101 (2011). 45. F. Saija, G. Fiumara, and P. V. Giaquinta, Mol. Phys. 87, 991 (1996); Erratum 92, 1089 (1997). 46. F. Saija, G. Fiumara, and P. V. Giaquinta, J. Chem. Phys. 108, 9098 (1998). 47. M. Matsumoto and T. Nishimura, ACM Trans. Model. Comput. Simul. 8, 3 (1998). 48. A. Santos, M. López de Haro, and S. B. Yuste, J. Chem. Phys. 122, 024514 (2005). 49. A. Santos, M. López de Haro, and S. B. Yuste, J. Chem. Phys. 132, 204506 (2010). 50. Y. C. Kim and M. E. Fisher, J. Phys. Chem. B 108, 6750 (2004)
Collections