Publication:
Nonequilibrium Casimir-like Forces in Liquid Mixtures

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2015-07-14
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
In this Letter, we consider a liquid mixture confined between two thermally conducting walls subjected to a stationary temperature gradient. While in a one-component liquid nonequilibrium fluctuation forces appear inside the liquid layer, nonequilibrium fluctuations in a mixture induce a Casimir-like force on the walls. The physical reason is that the temperature gradient induces large concentration fluctuations through the Soret effect. Unlike temperature fluctuations, nonequilibrium concentration fluctuations are also present near a perfectly thermally conducting wall. The magnitude of the fluctuation-induced Casimir force is proportional to the square of the Soret coefficient and is related to the concentration dependence of the heat and volume of mixing.
Description
© 2015 American Physical Society. The authors acknowledge valuable discussions with Jeremy N. Munday. The research at the University of Maryland was supported by the U.S. National Science Foundation under Grant No. DMR-1401449.
UCM subjects
Unesco subjects
Keywords
Citation
[1] M. Kardar and R. Golestanian, Rev. Mod. Phys. 71, 1233 (1999). [2] H. B. G. Casimir, Proc. K. Ned. Akad. Wet.Ser. B 51, 793 (1948). [3] G. L. Klimchitskaya, U. Mohideen, and V. M. Mostepanenko, Rev. Mod. Phys. 81, 1827 (2009). [4] M. E. Fisher and P.-G. de Gennes, C.R. Seances Acad. Sci., Ser. B 287, 207 (1978). [5] M. Krech, J. Phys. Condens. Matter 11, R391 (1999). [6] A. Gambassi, A. Maciolek, C. Hertlein, U. Nellen, L. Helden, C. Bechinger, and S. Dietrich, Phys. Rev. E 80, 061143 (2009). [7] A. Gambassi, C. Hertlein, L. Helden, S. Dietrich, and C. Bechinger, Europhysics News 40, 18 (2009). [8] J. R. Dorfman, T. R. Kirkpatrick, and J. V. Sengers, Annu. Rev. Phys. Chem. 45, 213 (1994). [9] R. Schmitmann and R. K. P. Zia, in Phase Transitions and Critical Phenomena, edited by C. Domb and J. L. Lebowitz (Academic, New York, 1995), Vol. 17. [10] J. M. Ortiz de Zárate and J. V. Sengers, Hydrodynamic Fluctuations in Fluids and Fluid Mixtures (Elsevier, Amsterdam, 2006). [11] B. Derrida, J. Stat. Mech. (2007) P07023. [12] W. B. Li, P. N. Segrè, R. W. Gammon, and J. V. Sengers, Physica (Amsterdam) 204A, 399 (1994). [13] W. B. Li, K. J. Zhang, J. V. Sengers, R. W. Gammon, and J. M. Ortiz de Zárate, J. Chem. Phys. 112, 9139 (2000). [14] T. R. Kirkpatrick, E. G. D. Cohen, and J. R. Dorfman, Phys. Rev. A 26, 995 (1982). [15] M. Tröndle, L. Hamau, and S. Dietrich, J. Chem. Phys. 129, 124716 (2008). [16] T. R. Kirkpatrick, J. M. Ortiz de Zárate, and J. V. Sengers, Phys. Rev. E 89, 022145 (2014). [17] K. Kawasaki, Ann. Phys. (N.Y.) 61, 1 (1970). [18] D. Bedeaux and P. Mazur, Physica (Amsterdam) 73, 431 (1974). [19] P. Mazur and D. Bedeaux, Physica (Amsterdam) 75, 79 (1974). [20] M. H. Ernst, E. H. Hauge, and J. M. J. van Leeuwen, J. Stat. Phys. 15, 7 (1976). [21] M. H. Ernst, E. H. Hauge, and J. M. J. van Leeuwen, J. Stat. Phys. 15, 23 (1976). [22] D. Forster, D. R. Nelson, and M. J. Stephen, Phys. Rev. A 16, 732 (1977). [23] P. Kovtun and L. G. Yaffe, Phys. Rev. D 68, 025007 (2003). [24] S. Caron-Huot and O. Saremi, J. High Energy Phys. 11 (2010) 013. [25] W. W. Wood, J. Stat. Phys. 57, 675 (1989). [26] M. G. Velarde and R. S. Schechter, Phys. Fluids 15, 1707 (1972). [27] W. B. Li, Ph.D. thesis, University of Maryland, 1996. [28] B. M. Law and J. C. Nieuwoudt, Phys. Rev. A 40, 3880 (1989). [29] J. V. Sengers and J. M. Ortiz de Zárate, Rev. Mex. Fis., Suppl. 1, 48, 14 (2002). [30] S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Dover edition. (Oxford University Press, Oxford, 1961). [31] J. M. Ortiz de Zárate, T. R. Kirkpatrick, and J. V. Sengers, arXiv:1505.01355v1. [32] P. N. Segrè, R. W. Gammon, J. V. Sengers, and B. M. Law, Phys. Rev. A 45, 714 (1992). [33] T. R. Kirkpatrick, J. M. Ortiz de Zárate, and J. V. Sengers, Phys. Rev. Lett. 110, 235902 (2013). [34] J. L. Parker, Langmuir 8, 551 (1992). [35] G. Bressi, G. Carugno, R. Onofrio, and G. Ruoso, Phys. Rev. Lett. 88, 041804 (2002). [36] A. Najafi and R. Golestanian, Europhys. Lett. 68, 776 (2004). [37] A. Aminov, Y. Kafri, and M. Kardar, Phys. Rev. Lett. 114, 230602 (2015). [38] J. M. Ortiz de Zárate and J. V. Sengers, J. Stat. Phys. 115, 1341 (2004). [39] S. Hartmann, G. Wittko, F. Schock, W. Grosz, F. Lindner, W. Köhler, and K. I. Morozov, J. Chem. Phys. 141, 134503 (2014). [40] K. J. Zhang, M. E. Briggs, R. W. Gammon, and J. V. Sengers, J. Chem. Phys. 104, 6881 (1996). [41] C. J. Takacs, A. Vailati, R. Cerbino, S. Mazzoni, M. Giglio, and D. S. Cannell, Phys. Rev. Lett. 106, 244502 (2011). [42] A. Vailati and M. Giglio, Nature (London) 390, 262 (1997). [43] D. Brogioli, A. Vailati, and M. Giglio, J. Phys. Condens. Matter 12, A39 (2000). [44] A. Donev, T. G. Fai, and E. Vanden-Eijnden, J. Stat. Mech. (2014) P04004.
Collections