Publication:
Molecular motor efficiency is maximized in the presence of both power-stroke and rectification

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2015-06-15
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
IOP Publishing
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We present a model for a feedback-controlled ratchet consisting of a Brownian particle and a moving, finite barrier that is shifted by an external agent depending on the position of the particle. By modifying the value of a single parameter of the feedback protocol, the model can act either as a pure rectifier, a power-stroke (PS) motor, or a combination of both. Interestingly, in certain situations the motor reaches a maximum efficiency for an intermediate value of that parameter, i.e., for a combination of the information ratchet and the PS mechanisms. We relate our results to the biological motors kinesin, myosin II, and myosin V, finding that these motors operate in a regime of length scales and forces where the efficiency is maximized for a combination of rectification and PS mechanisms.
Description
©2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft. The research leading to these results has received funding from the European Union Seventh Framework program (FP7/2007-2013) under grant agreement nr 308850 (project acronym INFERNOS) and by the Swedish Research Council. J M R P gratefully acknowledges the Pufendorf Institute at Lund university for its hospitality at the beginning of this project and financial support from the Spanish MINECO Grant ENFASIS (FIS2011-22644).
UCM subjects
Keywords
Citation
[1] Howard J 2006 Curr. Biol. 16 R517–9 [2] Huxley AF 1957 Prog. Biophys. Biophys. Chem. 7 255–318 [3] WangHand OsterG2002 App. Phys. A75 315–23 [4] Galburt E A, Parrondo JMand Grill SW2011 Biophys. Chem. 157 43–47 [5] Cao F and FeitoM2009 Phys. Rev. E 79 041118–1 [6] Parrondo JMR, Horowitz JMand Sagawa T 2015 Nat. Phys. 11 131–9 [7] Rief M, Rock R S, Mehta AD, MoosekerMS, Cheney R E and Spudich J A 2000 Proc. Natl Acad. Sci. USA 97 9482–6 [8] Purcell T J, SweeneyHL and Spudich J A 2005 Proc. Natl Acad. Sci. USA 102 13873–8 [9] Gennerich Aand Vale RD2009 Curr. Opin. Cell Biol. 21 59–67 [10] Astumian RD2010 Biophys. J. 98 2401–9 [11] Parrondo JMR and de Cisneros B J 2002 Appl. Phys. A 75 179–91 [12] Horowitz JM, Sagawa T and Parrondo J 2013 Phys. Rev. Lett. 111 010602 [13] Bauer M, AbreuDand SeifertU2012 J. Phys. A: Math. Theor. 45 162001 [14] Cover TMand Thomas J A 2006 Elements of Information Theory 2nd edn (Hoboken, NJ: Wiley) pp 13–55 [15] Roldán E and Parrondo JMR 2010 Phys. Rev. Lett. 105 150607 [16] BierM2007 BioSystems 88 301–7 [17] Ouldridge T E, GovernCCand ten Wolde P R 2015 (arXiv: 1503.00909v2) [18] Barato AC, HartichDand SeifertU2015 New J. Phys. 16 103024 [19] Hunt A J, Gittes F and Howard J 1994 Biophys. J. 67 766–81 [20] Svoboda Kand Block SM1994 Cell 77 773–84 [21] Finer J T, Simmons RMand Spudich JA 1994 Nature 368 113–9 [22] Meyhöfer E and Howard J 1995 Proc. Natl Acad. Sci. USA 92 574–8 [23] Svoboda K, SchmidtCF, Schnapp B J and Block SM1993 Nature 365 721–7 [24] Coppin CM, PierceDW, Hsu L and Vale RD1997 Proc. Natl Acad. Sci. USA 94 8539–44 [25] Leibler S and HuseDA 1993 J. Cell Biol. 121 1357–68 [26] SchnitzerMJ, VisscherKand Block SM2000 Nat. Cell Biol. 2 718–23 [27] Maxwell JC1871 Theory of Heat (London: Longmans Green) [28] Toyabe S, Sagawa T, Ueda M, Muneyuki E and SanoM2010 Nat. Phys. 6 988–92
Collections