Publication:
Extremal quantum states and their Majorana constellations

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2015-09-01
Authors
Björk, G.
Klimov, Andrei B.
Hoz Iglesias, Pablo de la
Grassl, M.
Leuchs, Gerd
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The characterization of quantum polarization of light requires knowledge of all the moments of the Stokes variables, which are appropriately encoded in the multipole expansion of the density matrix. We look into the cumulative distribution of those multipoles and work out the corresponding extremal pure states. We find that SU(2) coherent states are maximal to any order whereas the converse case of minimal states (which can be seen as the most quantum ones) is investigated for a diverse range of the number of photons. Taking advantage of the Majorana representation, we recast the problem as that of distributing a number of points uniformly over the surface of the Poincare sphere.
Description
©2015 American Physical Society. The authors acknowledge interesting discussions with Professor Daniel Braun and Olivia di Matteo. Financial support from the Swedish Research Council (VR) through its Linnaeus Center of Excellence ADOPT and Contract No. 621-2011-4575, the CONACyT (Grant No. 106525), the European Union FP7 (Grant Q-ESSENCE), and the Program UCM-Banco Santander (Grant No. GR3/14) is gratefully acknowledged. G.B. thanks the MPL for hosting him and the Wenner-Gren Foundation for economic support.
Keywords
Citation
[1] A. B. Klimov, L. L. Sánchez-Soto, E. C. Yustas, J. Söderholm, and G. Björk, Distance-based degrees of polarization for a quantum field, Phys. Rev. A 72, 033813 (2005). [2] A. Sehat, J. Söderholm, G. Björk, P. Espinoza, A. B. Klimov, and L. L. Sánchez-Soto, Quantum polarization properties of two-mode energy eigenstates, Phys. Rev. A 71, 033818 (2005). [3] C. Marquardt, J. Heersink, R. Dong, M. V. Chekhova, A. B. Klimov, L. L. Sánchez-Soto, U. L. Andersen, and G. Leuchs, Quantum Reconstruction of an Intense Polarization Squeezed Optical State, Phys. Rev. Lett. 99, 220401 (2007). [4] A. B. Klimov, G. Björk, J. Söderholm, L. S. Madsen, M. Lassen, U. L. Andersen, J. Heersink, R. Dong, C. Marquardt, G. Leuchs, and L. L. Sánchez-Soto, Assessing the Polarization of a Quantum Field from Stokes Fluctuations, Phys. Rev. Lett. 105, 153602 (2010). [5] C. R.Müller, B. Stoklasa, C. Peuntinger, C. Gabriel, J. Rěhácěk, Z. Hradil, A. B. Klimov, G. Leuchs, C. Marquardt, and L. L. Sánchez-Soto, Quantum polarization tomography of bright squeezed light, New J. Phys. 14, 085002 (2012). [6] G. Björk, J. Söderholm, Y. S. Kim, Y. S. Ra, H. T. Lim, C. Kothe, Y. H. Kim, L. L. Sánchez-Soto, and A. B. Klimov, Centralmoment description of polarization for quantum states of light, Phys. Rev. A 85, 053835 (2012). [7] R. S. Singh and H. Prakash, Degree of polarization in quantum optics through the second generalization of intensity, Phys. Rev. A 87, 025802 (2013). [8] L. L. Sánchez-Soto, A. B. Klimov, P. de la Hoz, and G. Leuchs, Quantum versus classical polarization states: When multipoles count, J. Phys. B 46, 104011 (2013). [9] P. de la Hoz, A. B. Klimov, G. Björk, Y. H. Kim, C. M¨uller, C. Marquardt, G. Leuchs, and L. L. Sánchez-Soto, Multipolar hierarchy of efficient quantum polarizationmeasures, Phys. Rev. A 88, 063803 (2013). [10] P. de la Hoz, G. Björk, A. B. Klimov, G. Leuchs, and L. L. Sánchez-Soto,Unpolarized states and hidden polarization, Phys. Rev. A 90, 043826 (2014). [11] E. Majorana, Atomi orientati in campo magnetico variabile, Nuovo Cimento 9, 43 (1932). [12] J. H. Conway, R. H. Hardin, and N. J. A. Sloane, Packing lines, planes, etc.: Packings in Grassmannian spaces, Exp. Math. 5, 139 (1996). [13] E. B. Saff and A. B. J. Kuijlaars, Distributing many points on a sphere, Math. Intell. 19, 5 (1997). [14] A. Luis and L. L. Sánchez-Soto, Quantum phase difference, phase measurements and Stokes operators, Prog. Opt. 41, 421 (2000). [15] M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, Cambridge, UK, 1999). [16] S. Chaturvedi, G. Marmo, and N. Mukunda, The Schwinger representation of a group: Concept and applications, Rev. Math. Phys. 18, 887 (2006). [17] D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii, Quantum Theory of Angular Momentum (World Scientific, Singapore, 1988). [18] M. G. Raymer, D. F. McAlister, and A. Funk, in Quantum Communication, Computing, and Measurement 2, edited by P. Kumar (Plenum, New York, 2000). [19] V. P. Karassiov and A. V. Masalov, The method of polarization tomography of radiation in quantum optics, JETP 99, 51 (2004). [20] U. Fano and G. Racah, Irreducible Tensorial Sets (Academic Press, New York, 1959). [21] K. Blum, Density Matrix Theory and Applications (Plenum, New York, 1981). [22] A. Perelomov, Generalized Coherent States and their Applications (Springer, Berlin, 1986). [23] H. Prakash and N. Chandra, Density operator of unpolarized radiation, Phys. Rev. A 4, 796 (1971). [24] G. S. Agarwal, On the state of unpolarized radiation, Lett. Nuovo Cimento 1, 53 (1971). [25] W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. the user language, J. Symbolic Comput. 24, 235 (1997). [26] A more detailed list of minimal states can be found at http://polarization.markus-grassl.de. [27] A. Baecklund and I. Bengtsson, Four remarks on spin coherent states, Phys. Scr. T163, 014012 (2014). [28] P. Delsarte, J. M. Goethals, and J. J. Seidel, Spherical codes and designs, Geom. Dedicata 6, 363 (1977). [29] O. Giraud, P. Braun, and D. Braun, Quantifying quantumness and the quest for queens of quantumness, New J. Phys. 12, 063005 (2010). [30] D. M. Klyshko, Polarization of light: Fourth-order effects and polarization-squeezed states, JETP 84, 1065 (1997). [31] P. Kolenderski and R. Demkowicz-Dobrzanski, Optimal state for keeping reference frames aligned and the platonic solids, Phys. Rev. A 78, 052333 (2008). [32] J. Crann, R. Pereira, and D. W. Kribs, Spherical designs and anticoherent spin states, J. Phys. A 43, 255307 (2010). [33] Y. Mimura, A construction of spherical 2-design, Graphs Combinator. 6, 369 (1990). [34] For a complete account, see http://neilsloane.com/sphdesigns/. [35] J. Zimba, “Anticoherent” spin states via the Majorana representation, Electron. J. Theor. Phys. 3, 143 (2006). [36] M. Aulbach, D. Markham, and M. Murao, The maximally entangled symmetric state in terms of the geometric measure, New J. Phys. 12, 073025 (2010). [37] O. Giraud, D. Braun, D. Baguette, T. Bastin, and J. Martin, Tensor Representation of Spin States, Phys. Rev. Lett. 114, 080401 (2015). [38] L. Arnaud and N. J. Cerf, Exploring pure quantum states with maximally mixed reductions, Phys. Rev. A 87, 012319 (2013). [39] D. Goyeneche and K. ˙ Zyczkowski, Genuinely multipartite entangled states and orthogonal arrays, Phys. Rev. A 90, 022316 (2014). [40] L. A. Rozema, D. H. Mahler, R. Blume-Kohout, and A. M. Steinberg, Optimizing the Choice of Spin-Squeezed States for Detecting and Characterizing Quantum Processes, Phys. Rev. X 4, 041025 (2014). [41] J. J. Bollinger, W. M. Itano, D. J. Wineland, and D. J. Heinzen, Optimal frequency measurements with maximally correlated states, Phys. Rev. A 54, R4649 (1996). [42] L. A. Rozema, Experimental quantum measurement with a few photons, Ph.D. thesis, University of Toronto, 2014. [43] L. Bányai, N. Marinescu, I. Raszillier, and V. Rittenberg, Irreducible tensors for the group su(3), Commun. Math. Phys. 2, 121 (1966). [44] J. S. Ivan, N. Mukunda, and R. Simon, Moments of non-Gaussian Wigner distributions and a generalized uncertainty principle: I. the single-mode case, J. Phys. A: Math. Theor. 45, 195305 (2012).
Collections