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Tuning the Mott Transition in a Bose-Einstein Condensate by Multiple Photon Absorption
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We study the time-dependent dynamics of a Bose-Einstein condensate trapped in an optical lattice.
Modeling the system as a Bose-Hubbard model, we show how applying a periodic driving field can induce
coherent destruction of tunneling. In the low-frequency regime, we obtain the novel result that the
destruction of tunneling displays extremely sharp peaks when the driving frequency is resonant with the
depth of the trapping potential (‘‘multi-photon resonances’’), which allows the quantum phase transition
between the Mott insulator and the superfluid state to be controlled with high precision. We further show
how the waveform of the field can be chosen to maximize this effect.

DOI: 10.1103/PhysRevLett.96.210403 PACS numbers: 05.30.Jp, 03.65.Xp, 03.75.Lm, 73.43.Nq
Recent spectacular progress in trapping cold atomic
gases [1] has provided a new arena for studying quantum
many-body physics. In particular, ultracold bosons held in
optical potentials provide an almost ideal realization of the
Bose-Hubbard (BH) model [2], in which the model pa-
rameters can be controlled to high precision. As well as
their purely theoretical interest, these systems attract at-
tention because of their possible application to quantum
information processing [3].

The BH model is described by the Hamiltonian

HBH � �J
X
hi;ji

�ayi aj � H:c:� �
U
2

X
i

ni�ni � 1�; (1)

where ai (ayi ) are the standard annihilation (creation)
operators for a boson on site i, ni � ayi ai is the number
operator, J is the tunneling amplitude between neighboring
sites, and U is the repulsion between a pair of bosons
occupying the same site. Its physics is governed by the
competition between the kinetic energy and the Hubbard
interaction, and thus by the ratio U=J. When U=J� 1 the
tunneling dominates, and the ground state of the system is a
superfluid. As U=J is increased the system passes through
a quantum phase transition, and evolves into a Mott-
insulator (MI) state in which the bosons localize on the
lattice sites.

This phase transition was observed experimentally in
Ref. [4] by varying the depth of the optical potential. In this
Letter we propose an alternative method: applying an addi-
tional oscillatory potential induces coherent destruction of
tunneling (CDT), and thus suppresses the effect of J. CDT
is a quantum interference effect, discovered in the pioneer-
ing work of Ref. [5], in which the period for tunneling
between states diverges as their associated quasienergies
[6] approach degeneracy.

Here we show how CDT can be used to control the
dynamics of a boson condensate, by means of a novel
resonance effect between U and the frequency of the
driving field. We consider a one-dimensional BH model,
driven by a time-periodic potential which varies linearly
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with site number. The Hamiltonian is given by

H�t� � HBH � Kf�t�
XN
j

jnj; (2)

where K is the amplitude of the driving field, and f�t� is a
T-periodic function of unit amplitude that describes its
waveform. Such time-periodic linear potentials—gener-
ated by an accelerated lattice for example—have already
been used in cold-atom experiments [7]. A similar form of
driving potential was also recently investigated theoreti-
cally [8] in the high-frequency regime (!>U), and was
found to suppress the transition to the superfluid regime.

Here, for the first time, the multiphoton (low-frequency)
regime is investigated. An unexpected new finding is that
CDT is now modulated by a set of extremely sharp ‘‘reso-
nances’’ [the contrast between the high-frequency behavior
and the multiphoton regime investigated here is illustrated
in Fig. 1(a)]. This means that the Mott transition can be
induced by minute changes in experimental parameters.

Henceforth we put @ � 1 and measure all energies in
units of J, and set the number of bosons equal to the
number of lattice sites N. Although the dimension of the
Hilbert space increases exponentially with N, in a Fock
basisH is extremely sparse, with at most �2N � 1) nonzero
entries per row. Thus despite the rapid increase in the
dimension of the Hilbert space, this sparsity allows us to
treat relatively large systems of up to 11 sites, and so assess
if the effects we observe survive in the thermodynamic
limit.

Our numerical investigation consists of initializing the
system in the ‘‘ideal’’ MI state, j�MIi �

Q
ayj j0i, and

evolving the many-particle Schrödinger equation over
time (typically ten periods of the driving field) using a
Runge-Kutta method. To study the system’s time-evolution
quantitatively, we measure the overlap of the wave func-
tion with the initial state P�t� � jh�MIj��t�ij

2. For conve-
nience we term the minimum value of P�t� attained during
the time evolution to be the localization. When CDT
occurs, the system will remain frozen in the MI state,
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FIG. 1 (color online). (a) The minimum overlap with the MI
state, or localization, reached in a 7-site system with U � 8,
during 10 periods of driving. For ! � 20 (dashed line) the
localization peaks at K=! � 2:4; 5:5—the zeros of J 0�K=!�.
When ! is reduced to ! � 8 (the first photon resonance, solid
line), the peaks become extremely narrow and are centered on
the zeros of J 1�K=!�. The diamonds mark the points K=! �
3:5 and 3.8 (see below). (b) Time evolution of the ! � 8 case for
three system sizes, 7, 9, and 11 sites. For K=! � 3:5, away from
the resonance, the overlap with the initial state, P�t�, rapidly
drops to zero. For K=! � 3:8, at the peak of the resonance, the
decay is much slower, indicating that the driving field preserves
the MI state.
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and consequently the localization will be close to 1.
Conversely, if the bosons are able to tunnel freely from
site to site, the value of the localization will be reduced.

We begin by considering the case of sinusoidal driving,
f�t� � sin!t. The MI transition is quite soft in 1D, starting
at U ’ 4 and developing fully for U > 20. Throughout this
work we use an intermediate value of U � 8. Figure 1(a)
shows how the localization in a 7-site system varies as the
amplitude of the driving field is increased, while its fre-
quency is held constant at ! � 20. For K � 0 the local-
ization has a value of 	0:3, demonstrating that in the
absence of a driving field this value of U is indeed insuffi-
cient to maintain the MI state. Applying the driving field
causes the localization to steadily rise from this value as K
is increased from zero, indicating that the effective tunnel-
ing between lattice sites is increasingly suppressed, until it
peaks at a value close to 1 at K=! � 2:4. AsK is increased
further, the localization goes through a shallow local mini-
mum, before again peaking at K=! � 5:5. It was observed
[8] that these values of K=! are close to the first two zeros
of J 0, the zeroth Bessel function.

Reducing the driving frequency to a lower value,! � 8,
produces a radically different behavior—the value of the
localization rapidly drops as K=! is increased from zero,
indicating that the field destroys the MI state. As K=! is
increased further the value of the localization remains
extremely low except at a series of very sharp peaks.
Figure 1(b) emphasizes the narrowness of these peaks by
showing the time evolution of the system for two values of
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K. For the first,K � 3:5!, P�t� rapidly falls from its initial
value, reaching a level near zero within five driving peri-
ods. There is a small dependence on the system size, with
the decay occurring more quickly as N is increased. At the
localization peak, K � 3:8!, P�t� decays far more slowly
with time, so that after 20 periods of driving it only falls to
a value of 	0:9, and only minor dependence on N is
evident. Thus for this value of !, altering the amplitude
of the field by just 10% produces enormous differences in
the localization.

Although the Hamiltonian (2) is explicitly time depen-
dent, the fact that it is periodic allows us to use the Floquet
theorem to write solutions of the Schrödinger equation as
 �t� � exp��i�jt��j�t�, where �j is the quasienergy, and
�j�t� is a T-periodic function called the Floquet state [6].
As the quasienergies are only defined up to an arbitrary
multiple of !, the quasienergy spectrum possesses a
Brillouin zone structure, in precise analogy to the quasi-
momentum in spatially periodic crystals. For the Floquet
analysis, we work in an extended Hilbert space of
T-periodic functions [9]. In this approach, the Floquet
states and quasienergies satisfy

H �t�j�j�t�i � �jj�j�t�i; (3)

where H �t� � H�t� � i@@=@t. Working in this extended
Hilbert space thus reduces the task of calculating the time-
dependent, driven dynamics of the system to a time-inde-
pendent eigenvalue problem.

To study the behavior of the quasienergies, we make use
of a perturbative scheme developed in Ref. [10] to treat
noninteracting systems, and later generalized in Ref. [11]
to include interactions. Our procedure is to first find the
eigensystem of the operator H 0�t� � H0�t� � i@@=@t,
where H0 contains terms diagonal in a Fock basis (i.e.,
the driving term and the Hubbard interaction). We are then
able to use standard Rayleigh-Schrödinger perturbation
theory to evaluate the corrections to this result, using the
remaining terms of HBH as the perturbation.

For the two-site system, a natural basis is given by the
Fock states fj1; 1i; j2; 0i; j0; 2ig, where jn;mi denotes the
state with n bosons on the first site and m on the second.
Finding the eigensystem of H 0 then amounts to solving
three first-order differential equations, yielding the result

j���t�i �
�
0; exp

�
�i�U� ���t� i

K
!

cos!t
�
; 0
�

j�0�t�i �
�
0; 0; exp

�
�i�U� �0�t� i

K
!

cos!t
��

j���t�i � �exp�i��t�; 0; 0�:

(4)

Imposing the T-periodic boundary condition on these
states requires setting �� � 0 and �U� ��=0� � m!,
where m is an integer. Thus in general it is not possible
to include the full Hubbard-interaction term within H0,
depending on its commensurability with !. To deal with
this it is necessary to decompose U into a form which
3-2
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duplicates the Brillouin zone structure of the quasienergies

U � n!� u; n � 0; 1; 2 . . . (5)

where u is the ‘‘reduced interaction,’’ juj 
 !=2. This
decomposition reveals that only the reduced interaction
needs to be included in the perturbation, while the remain-
der of U (an integer multiple of !) can be retained in H0.

To first order it is easily shown that the three quasiener-
gies are given by

�0 � u and �� � �u�
������������������������
u2 � 16J2

eff

q
�=2; (6)

where the intersite tunneling has been reduced to an effec-
tive value Jeff � J J n�K=!�, and n and u are defined in
Eq. (5). Thus in the high-frequency limit (!� U), when
n � 0 and u � U, it is clear that the quasienergies �0 and
�� are degenerate when J 0�K=!� � 0. In Fig. 2(a) we
show the excellent agreement between the perturbative
result and the exact quasienergies for a driving field of
frequency ! � 20. In Fig. 2(b) we plot the corresponding
value of the localization, and it can be clearly seen that the
peaks in this quantity are indeed centered on the points of
closest approach of the quasienergies. It may be seen from
Eq. (6) that for large values of u, the quasienergy separa-
tion ��� � �0� ’ 4J2

eff=u. The effect of u is thus to reduce
the amplitude of oscillations in this quantity, and so to
smear out the avoided crossings of the quasienergies. As a
result, the peaks in the localization are rather broad and
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FIG. 2 (color online). (a) Quasienergy spectrum of a 2-site
system, with U � 8 and ! � 20. Only two of the three quasie-
nergies are plotted (the remaining one oscillates weakly about
zero), which make a series of close approaches to each other as
K is increased. Solid lines in (a) and (c) (red online) denote the
perturbative solutions, which agree well with the exact
results (black circles). (b) At the points of close approach, the
tunneling is suppressed and the localization peaks. For all field
strengths the tunneling is suppressed with respect to the undriven
system, and the localization is thus enhanced. (c) At lower
frequencies the behavior of the quasienergies changes dramati-
cally. At ! � 8 the system is at the first photon resonance (U �
!), and the behavior of the quasienergies is described extremely
well by the perturbative solutions � � 0;�2J 1�K=!�. (d) As
before, the localization is peaked at the points of quasienergy
crossing, but in contrast to (b) the peaks are extremely sharp.
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overlap each other, and thus the localization cannot reach
particularly low values.

Equation (5) reveals the particular importance of photon
resonances, whenU is an integer multiple of the frequency
of the driving field, U � n!. When this condition is sat-
isfied the reduced interaction is zero, and the crossings
between the quasienergies are well-defined. This is the
origin of the extremely sharp peaks in localization seen
in Fig. 1(a) for ! � U � 8. Away from these peaks, the
photon absorption compensates for the energy cost of
doubly occupying a lattice site, in analogy to the photon-
assisted tunneling studied in Ref. [12], thereby producing
low values of localization. In Fig. 2(c) we plot the quasie-
nergies for the first photon resonance (n � 1) for the two-
site system. For weak fields (K=!< 2) small deviations of
the exact quasienergies from the perturbative result are
visible, but for higher field strengths the agreement is again
excellent. In Fig. 2(d) we plot the localization produced in
this system, and we can note that, as seen previously in the
7-site system, the localization takes extremely low values
except at a set of very narrow peaks. These peaks are
precisely aligned with the quasienergy crossings at the
zeros of J 1�K=!�.

As we reduce ! still further, we can expect to encounter
a sequence of higher resonances with similar behavior. In
Fig. 3(a) we compare the values of localization produced in
a 7-site system for the n � 1 and n � 2 resonances. The
second photon resonance, however, produces a worse re-
sult than for n � 1. Although sharp peaks are still present
in the localization, and in agreement with the perturbation
theory they are indeed centered on the zeros of J 2�K=!�,
the maximum value of localization produced is consider-
ably lower.
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FIG. 3 (color online). Localization produced in a 7-site system
(U � 8) for two forms of periodic driving: (a) sinusoidal,
(b) square wave. Both waveforms produce excellent localization
at the first photon resonance, ! � U, shown by solid black lines.
At the second photon resonance (2! � U), shown by dashed
lines (red online), the localization produced by the sinusoidal
driving is considerably smaller, but the square wave still pro-
duces high peaks.
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FIG. 4 (color online). The localization produced in a 5-site
system with U � 8 as a function of the frequency ! of the
square wave driving field and its amplitude K. When n! � U
the localization is almost zero [the centers of the horizontal
bands (blue online)] except at sharply defined peaks (red back-
ground online). Between the bands localization is good. The n �
1, 2, 3, and 4 resonances are marked on the right. The upper-left
triangle (blue online) displays poor localization and little struc-
ture, corresponding to the nonperturbative regime.
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This poor localization occurs because not all of the
quasienergy crossings in the Floquet spectrum of a
many-site system will occur at precisely the same value
of K=!; instead the various crossings occur over an inter-
val. Thus although at the peaks in the localization many
pairs of Floquet states will be degenerate (and tunneling
between them will be suppressed), other state-pairs will
only be approximately degenerate and will permit a small,
but nonzero, degree of tunneling to occur. The major
factors influencing this effect arise from higher-order terms
in the expansion of the single-period time-evolution opera-
tor U�T; 0�, which manifest as multiparticle tunneling and
tunneling beyond nearest neighbors. CDT is a quantum
interference effect, which occurs when the dynamical
phase acquired by a particle in a period of driving produces
destructive interference, thereby suppressing the particle’s
dynamics. If, however, a ‘‘clump’’ of n1 bosons tunnels
between sites, the dynamical phase will be n1 times larger
than that for a single boson. Similarly, if a boson tunnels
between two sites separated by n2 > 1 lattice spacings, the
dynamical phase will be n2 times larger. For sinusoidal
driving, the single-particle tunneling is suppressed when
J n�K=!� � 0; for these higher-order processes also to be
suppressed we therefore also require J n�n1n2K=!� � 0
for integers n1; n2 � 1; 2 . . .N.

Clearly this condition cannot be satisfied for sinusoidal
driving, as the zeros of J n�x� are not equally spaced. Thus
to observe good localization properties at high photon
resonances we need to construct a driving field f�t� such
that the crossings in its Floquet spectrum are periodically
spaced. This problem was confronted in a different context
in Ref. [13], where it was shown that such a field must be
discontinuous at changes of sign. Possibly the simplest
field of this type, and the most convenient for experiment,
is a square wave field.

In Fig. 3(b) we show the localization obtained in a 7-site
system driven by a square wave. Using the same perturba-
tive approach as before, it may be shown that the quasi-
energy degeneracies occur for �K=!� � 2m� 1 or 2m,
depending on whether the order of the resonance n is odd
or even. Unlike the case of sinusoidal driving, the n � 2
resonance displays good localization, comparable to that
obtained for n � 1. A contour plot showing the localiza-
tion as a function of both K=! and !�1 is presented in
Fig. 4. The prominent horizontal bands correspond to the
photon resonances (!�1 � n=U), which are punctuated by
a series of narrow peaks at which the localization is pre-
served. This plot also clearly shows the division between
the fairly featureless, poorly localized, ‘‘weak-driving’’
regime to the upper left, and the ‘‘strong-driving’’ regime
which shows the resonance features. For the latter, the
dynamics of the system are dominated by the combined
effect of the driving field and the Hubbard interaction, and
thus is well described by our form of perturbation theory.
21040
Figure 4 allows us to locate the boundary between the two
regimes quite accurately as K=! ’ �2U�=!.

In summary, we have investigated the dynamics of the
BH model under a periodic driving field. For high frequen-
cies [8] the field can be used to inhibit tunneling by means
of CDT and thus stabilize the MI state. Lowering the
frequency, however, reveals the existence of resonance
effects which can be used to selectively destroy or preserve
the MI state. Lower driving frequencies have the added
advantages in experiment that they heat the condensate
less, and will not drive transitions to higher Bloch bands
thereby invalidating the single band model. The extremely
narrow width of the resonance features indicates that it
should be possible to control the Mott transition very
precisely in this manner.
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