Publication:
Comparative proteomic study of Edwardsiella tarda strains with different degrees of virulence.

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2015-09-08
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Edwardsiella tarda is an enteric opportunistic pathogen that causes a great loss in aquaculture. This species has been described as a phenotypical homogeneous group; in contrast, serological studies and molecular typing revealed a wide heterogeneity. In this work, a proteomic study of differential expression of a virulent isolate from turbot cultured in the Norwest of Spain in comparison with an avirulent collection strain was performed in order to recognize proteins involved in virulence. One hundred and three proteins that presented different abundance were successfully identified and classified into 11 functional categories according to their biological processes: amino acid, carbohydrate and lipid metabolism, tricarboxylic cycle, stress response and protein fate, protein synthesis, biogenesis of cellular components, cell rescue defence and virulence, cell membrane and transport, signal transduction and purine and pyrimidine metabolism. Twenty three protein spots detected only in turbot isolate were identified. It was shown that the same proteins appeared in different spots in the two isolates. Mass spectra obtained by MALDITOF/TOF of some of these proteins and DNA sequencing explained the changes as a result of different amino acid sequences. Several proteins related with the virulence of E. tarda (FliC, ArnA or FeSODI) were only detected in the turbot European isolate.
Description
Keywords
Citation
[1]J.M. Janda, S.L. Abbott, Infections associated with the genus Edwardsiella: the role of Edwardsiella tarda in human disease, Clin. Infect. Dis. 17 (1993) 742–748. [2] B.R. Mohanty, P.K. Sahoo, Edwardsiellosis in fish: a brief review, J. Biosci. 32 (2007) 1331–1344. [3] N. Castro, A.E. Toranzo, J.L. Barja, S. Núñez, B. Magariños, Characterization of Edwardsiella tarda strains isolated from turbot, Psetta maxima (L.), J. Fish Dis. 29 (2006) 541–547. [4] F. Padrós, C. Zarza, L. Dopazo, M. Cuadrado, S. Crespo, Pathology of Edwardsiella tarda infection in turbot, Scophthalmus maximus (L.), J. Fish Dis. 29 (2006) 87–94. [5] N. Castro, A.E. Toranzo, A. Bastardo, J.L. Barja, B. Magariños, Intraspecific genetic variability of Edwardsiella tarda strain from culture turbot, Dis. Aquat. Org. 95 (2011) 253–258. [6] B. Austin, D.A. Austin, Characteristics of the diseases, Bacterial Fish Pathogens: Diseases of Farmed and Wild Fish, 3th ed.Springer Praxis, Chichester 1999, pp. 13–15. [7] G. Kumar, G. Rathore, U. Sengupta, V. Singh, D. Kapoor, W.S. Lakra, Isolation and characterization of outer membrane proteins of Edwardsiella tarda and its application in immunoassays, Aquaculture 272 (2007) 98–104. [8] M. Acharya, N.K. Maiti, S. Mohanty, P. Mishra, M. Samanta, Genotypimg of Edwardsiella tarda isolated from freshwater fish culture system, Comp. Immunol. Microbiol. Infect. Dis. 30 (2007) 33–40. [9] V.S. Panangala, V.L. Santen, C.A. Shoemaker, P.H. Klesius, Analysis of 16S–23S intergenic spacer regions of the rRNA operons in Edwardsiella ictaluri and Edwardsiella tarda isolated from fish, J. Appl. Microbiol. 99 (2005) 657–669. [10] S.H. Ling, X.H. Wang, L. Xie, T.M. Lim, K.Y. Leung, Use of green fluorescent protein (GFP) to study the invasion pathways of Edwardsiella tarda in in vivo and in vitro fish models, Microbiology 146 (2000) 7–19. [11] P.S. Srinivasa Rao, T.M. Lim, K.Y. Leung, Opsonized virulent Edwardsiella tarda strains are able to adhere to and survive and replicate within fish phagocytes but fail to stimulate reactive oxygen intermediates, Infect. Immun. 69 (2001) 5689–5697. [12] I. Hirono, N. Tange, T. Aoki, Iron-regulated haemolysin gene from Edwardsiella tarda, Mol. Microbiol. 24 (1997) 851–856. [13] P.S. Srinivasa Rao, Y. Yamada, K.Y. Leung, Amajor catalase (KatB) that is required for resistance to H2O2 and phagocyte-mediated killing in Edwardsiella tarda, Microbiology 149 (2003) 2635–2644. [14] Janda JM, Abbott SL, Kroske-Bystrom S, CheungWK, Powers C, Kokka RP, Tamura K. Pathogenic properties of Edwardsiella species. J. Clin. Microbiol. 199;29:1997–2001. [15] T. Morohoshi, T. Inaba, N. Kato, K. Kanai, T. Ikeda, Identification of quorum-sensing signal molecules and the LuxRI homologs in fish pathogen Edwardsiella tarda, J. Biosci. Bioeng. 98 (2004) 274–281. [16] Y. Han, X. Li, Z. Qi, X.H. Zhang, P. Bossier, J. Detection of different quorum-sensing signal molecules in a virulent Edwardsiella tarda strain LTB-4, J. Appl. Microbiol. 108 (2010) 139–147. [17] G. Kumar, P. Sharma, G. Rathore, D. Bisht, U. Sengupta, J. Proteomic analysis of outer membrane proteins of Edwardsiella tarda, Appl. Microbiol. 108 (2010) 2214–2221. [18] J.A. Reales-Calderón, L. Martínez-Solano, M. Martínez-Gomariz, C. Nombela, G. Molero, C. Gil, Sub-proteomic study on macrophage response to Candida albicans unravels new proteins involved in the host defense against the fungus, J. Proteomics 75 (2012) 4734–4746. [19] M. Unlu, M.E. Morgan, J.S. Minden, Difference gel electrophoresis: a single method for detecting changes in proteins extracts, Electrophoresis 18 (1991) 2071–2077. [20] L. Monteoliva, J.P. Albar, Differential proteomics: an overview of gel and non-gel based approaches, Brief. Funct. Genomic. Proteomic. 3 (2004) 220–239. [21] N.A. Karp, P.S. McCormick, M.R. Russell, K.S. Lilley, Experimental and statistical considerations to avoid false conclusions in proteomics studies using differential in-gel electrophoresis, Mol. Cell. Proteomics 6 (2007) 1354–1364. [22] V. Neuhoff, N. Arold, D. Taube, W. Ehrhardt, Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250, Electrophoresis 9 (1988) 255–262. [23] J. Havlis, H. Thomas,M. Sebela, A. Shevchenko, Fast-response proteomics by accelerated in-gel digestion of proteins, Anal. Chem. 75 (2003) 1300–1306. [24] W. Dang, Y.-H. Hu, L. Sun, HptG is involved in the pathogenesis of Edwardsiella tarda, Vet. Microbiol. 152 (2011) 394–400. [25] Y. He, T. Xu, L.E. Fossheim, X.H. Zhang, FliC, a flagellin, is a essential for the growth and virulence of fish pathogen Edwardsiella tarda, PLoS ONE 7 (2012) e45070, http://dx.doi.org/10.1371/journal.pone.0045070. [26] Y. Yamada, H. Wakabayashi, Identification of fish-pathogenic strains belonging to the genus Edwardsiella by sequence analysis of sodB, Fish Pathol. 34 (1999) 145–150. [27] S. Cheng, M. Zhang, L. Sun, The iron-cofactored superoxide dismutase of Edwardsiella tarda inhibits macrophage-mediated innate immune response, Fish Shellfish Immunol. 29 (2010) 972–978. [28] S.B. Park, H.B. Jang, S.W. Nho, I.S. Cha, J.-I. Hikima, M. Ohtani, T. Aoki, T.S. Jung, Outer membrane vesicles as a candidate vaccine against edwardsiellosis, PLoS ONE 6 (2011) e17629, http://dx.doi.org/10.1371/journal.pone.0017629. [29] J.E. Yu, A.Y. Yoo, K.-H. Choi, J. Cha, I. Kwak, H.Y. Kang, Identification of antigenic Edwardsiella tarda surface proteins and their role in pathogenesis, Fish Shellfish Immunol. 34 (2013) 673–682.C. Wang, Y. Liu, H. Li, W.-J. Xu, H. Zhang, X.-X. Peng, Identification of plasmaresponsive outer membrane proteins and their vaccine potential in Edwardsiella tarda using proteomic approach, J. Proteomics 75 (2012) 1263–1275. [31] T. Sakai, T. Matsuyama, T. Nishioka, C. Nakayasu, T. Kamaishi, K. Yamaguchi, T. Iida, Identification of major antigenic proteins of Edwardsiella tarda recognized by Japanese flounder antibody, J. Vet. Invest. 21 (2009) 504–509. [32] J. Mattow, P.R. Jungblut, U.E. Schaible, H.J. Mollenkopf, S. Lamer, U. Zimny-Arndt, K. Hagens, E.C. Müller, S.H. Kaufmann, Identification of proteins from Mycobacterium tuberculosis missing in attenuated Mycobacterium bovis BCG strains, Electrophoresis 22 (2001) 2936–2946. [33] M. Hubálek, L. Hernychová, M. Brychta, J. Lenco, J. Zechovská, J. Stulík, Comparative proteome analysis of cellular proteins extracted from highly virulent Francisella tularensis ssp. tularensis and less virulent F. tularensis ssp. holarctica and F. tularensis ssp. mediaasiatica, Proteomics 4 (2004) 3048–3060. [34] D. Stead,H. Findon, Z.Yin, J.Walker, L. Selway,P. Cash, B.A. Dujon, C. Hennequin, A.J.P. Brown, K. Haynes, Proteomic changes associated with inactivation of the Candida glabrata ACE2 virulence-moderating gene, Proteomics 5 (2005) 1838–1848. [35] A. Tonietto, B.A. Petriz, C.W. Araújo, A. Metha, Magalhães, L.O. Franco, Comparative proteomics between natural Microcystis isolateswith a focus onmicrocystin synthesis, Proteome Sci. 10 (2012) 38. [36] F.A. Kondrashov, E.V. Koonin, I.G. Morgunov, T.V. Finogenova, M.N. Kondrashova, Evolution of glyoxylate cycle enzymes in metazoa: evidence of multiple horizontal transfer events and pseudogene formation, Biol. Direct 1 (2006), http://dx.doi.org/10.1186/1745-6150-1-31. [37] M.C. Lorenz, G.R. Fink, The glyoxylate cycle is required for fungal virulence, Nature 412 (2001) 83–86. [38] D. Schnappinger, S. Erhrt, M.I. Voskuil, Y. Liu, J.A. Mangan, I.M. Monahan, G.Dolganov, B. Efron, P.D. Butcher, C. Nathan, G.K. Schoolnik, Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment, J. Exp. Med. 198 (2003) 693–704. [39] M.F. Dunn, J.A. Ramírez-Trujillo, I. Hernández-Lucas, Major roles of isocitrate lyase and malate synthase in bacterial and fungal pathogenesis, Microbiology 155 (2009) 3166–3175. [40] S. Köhler, V. Foulongne, S. Ouahrani-Bettache, G. Bourg, J. Teyssier, M. Ramuz, J.-P. Liautard, The analysis of the intramacrophagic virulome of Brucella suis deciphers the environment encountered by the pathogen inside the macrophage host cell, PNAS 99 (2002) 157911–157916. [41] Q.Wang,M. Yang, J. Xiao, H.Wu, X.Wang, Y. Lv, L. Xu, H. Zheng, S.Wang, G. Zhao, Q.Liu, Y. Zhang, Genome sequence of the versatile fish pathogen Edwardsiella tarda provides insights into its adaptation to broad host ranges and intracellular niches, PLoS ONE 4 (2009) e7646, http://dx.doi.org/10.1371/journal.pone.0007646. [42] R. Voulhoux, J. Ttommassen, Omp85, an evolutionarily conserved bacterial protein involved in outer-membrane-protein assembly, Res. Microbiol. 155 (2004) 129–135. [43] Y. He, T. Xu, Y. Han, X. Shi, X.-H. Zhang, Phenotypic diversity of Edwardsiella tarda isolated from different origins, Lett. Appl. Microbiol. 53 (2001) 294–299. [44] K. Otto, J. Norbeck, T. Larsson, K.A. Karlsson, M. Hermansson, Adhesion of type 1-fimbriated Escherichia coli to abiotic surfaces leads to altered composition of outer membrane proteins, J. Bacteriol. 183 (2001) 2445–2453. [45] G. O'Toole, H.B. Kaplan, R. Kolter, Biofilm formation as microbial development, Annu. Rev. Microbiol. 54 (2000) 49–79. [46] C. Nucci, W.D. da Silveira, Corrêa S. da Silva, G. Nakazato, S.Y. Bando, M.A. Ribeiro, Pestana de Castro AF, Microbiological comparative study of isolated of Edwardsiella tarda isolated in different countries from fish and human, Vet. Microbiol. 89 (2002) 29–39. [47] S.-Y.Wang, J. Lauritz, J. Jass, D.L.Milton, Role for the major outer-membrane protein from Vibrio anguillarum in bile resistance and biofilm formation, Microbiology 149 (2003) 1061–1071. [48] S.D. Breazeale, A.A. Ribeiro, A.L. McClerren, C.R.H. Raetz, A formyltransferase required for polymyxin resitance in Escherichia coli and the modification of lipid A with 4-amino-4-deoxy-L-arabinose, J. Biol. Chem. 280 (2005) 14154–14167. [49] W. Wang, X.H. Zhang, B. Austin, Comparative analysis of the phenotypic characteristics of high- and low-virulent strains of Edwardsiella tarda. 2010, J. Fish Dis. 33 (2010) 985–994. [50] T. Matsuyama, T. Kamaishi, N. Ooseko, K. Kurohara, T. Iida, Pathogenicity of motile and non-motile Edwardsiella tarda to some marine fish, Fish Pathol. 40 (2005) 133–135. [51] P.S. Srinivasa Rao, Y. Yamada, Y. Peng Tan, K.Y. Leung, Use proteomics to identify novel virulence determinants that are required for Edwardsiella tarda pathogenesis, Mol. Microbiol. 53 (2004) 573–586. [52] J. Okuda, F.Murayama, E. Yamanoi, E. Iwamoto, S.Matsuoka, M. Nishibuchi, T. Nakai, Base changes in the fliC gene of Edwardsiella tarda: possible effects on flagellation and motility, Dis. Aquat. Org. 76 (2007) 113–121. [53] Y. Yamada, H. Wakabayashi, Enzyme electrophoresis, catalase test and PCR-RFLP analysis for the typing of Edwardsiella tarda, Fish Pathol. 33 (1998) 1–5.
Collections