Publication:
Dynamical control of correlated states in a square quantum dot

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2002-12-15
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
In the limit of low particle density, electrons confined to a quantum dot form strongly correlated states termed Wigner molecules, in which the Coulomb interaction causes the electrons to become highly localized in space. By using an effective model of Hubbard-type to describe these states, we investigate how an oscillatory electric field can drive the dynamics of a two-electron Wigner molecule held in a square quantum dot. We find that, for certain combinations of frequency and strength of the applied field, the tunneling between various charge configurations can be strongly quenched, and we relate this phenomenon to the presence of anticrossings in the Floquet quasi-energy spectrum. We further obtain simple analytic expressions for the location of these anti-crossings, which allows the effective parameters for a given quantum dot to be directly measured in experiment, and suggests the exciting possibility of using ac-fields to control the time evolution of entangled states in mesoscopic devices.
Description
© 2002 The American Physical Society. The authors would like to thank John Jefferson for helpful discussions and comments. This research was supported by the EU through the TMR program ‘‘Quantum Transport in the Frequency and Time Domains,’’ and by the DGES (Spain) through Grant No. PB96-0875.
Keywords
Citation
1. T.H. Oosterkamp, T. Fujisawa, W.G. van der Wiel, K. Ishibashi, R.V. Hijman, S. Tarucha, and L.P. Kouwenhoven, Nature (London) 395, 873 (1998). 2. B.E. Cole, J.B. Williams, B.T. King, M.S. Sherwin, and C.R. Stanley, Nature (London) 410, 60 (2001); D. Vion, A. Aasime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Esteve, and M.H. Devoret, Science 296, 886 (2002). 3. F. Grossmann, T. Dittrich, P. Jung, and P. Hänggi, Phys. Rev. Lett. 67, 516 (1991). 4. M. Grifoni and P. Hänggi, Phys. Rep. 304, 229 (1998). 5. J.H. Jefferson and W. Häusler, Phys. Rev. B 54, 4936 (1996). 6. S. Akbar and I.-H. Lee, Phys. Rev. B 63, 165301 (2001). 7. C.E. Creffield, W. Häusler, J.H. Jefferson, and S. Sarkar, Phys. Rev. B 59, 10 719 (1999). 8. C.E. Creffield, J.H. Jefferson, S. Sarkar, and D.L.J. Tipton, Phys. Rev. B 62, 7249 (2000). 9. M. Koskinen, M. Manninen, B. Mottelson, and S.M. Reimann, Phys. Rev. B 63, 205323 (2001). 10. D.G. Austing, T. Honda, and S. Tarucha, Semicond. Sci. Technol. 12, 631 (1997). 11. J.T. Stockburger, Phys. Rev. E 59, R4709 (1999). 12. C.A. Stafford and S. Das Sarma, Phys. Rev. Lett. 72, 3590 (1994); R. Kotlyar and S. Das Sarma, Phys. Rev. B 55, R10205 (1997). 13. C.S. Lent, Science 288, 159 (2000); G.H. Bernstein, I. Amlani, A.O. Orlov, C.S. Lent, and G.L. Snider, Nanotechnology 10, 166 (1999). 14. C.E. Creffield and G. Platero, Phys. Rev. B 65, 113304 (2002). 15. T. Fujisawa, D.G. Austing, Y. Tokura, Y. Hirayama, and S. Tarucha, Phys. Rev. Lett. 88, 236802 (2002). 16. M. Holthaus, Z. Phys. B: Condens. Matter 89, 251 (1992). 17. J.H. Shirley, Phys. Rev. 138, B979 (1965). 18. M. Holthaus, Phys. Rev. Lett. 69, 351 (1992). 19. H. Sambe, Phys. Rev. A 7, 2203 (1973).
Collections