Magnetic field dependence of the low-energy spectrum of a two-electron quantum dot



Downloads per month over past year

Creffield, Charles E. and Jefferson, John H and Sarkar,, Sarben and Tipton, D. L. J. (2000) Magnetic field dependence of the low-energy spectrum of a two-electron quantum dot. Physical review B, 62 (11). pp. 7249-7256. ISSN 1098-0121

[thumbnail of Creffield C 28 LIBRE.pdf]

Official URL:


The low-energy eigenstates of two interacting electrons in a square quantum dot in a magnetic field are determined by numerical diagonalization. In the strong correlation regime, the low-energy eigenstates show Aharonov-Bohm-type oscillations, which decrease in amplitude as the field increases. These oscillations, including the decrease in amplitude, may be reproduced to good accuracy by an extended Hubbard model in a basis of localized one-electron Hartree states. The hopping matrix element t comprises the usual kinetic energy term plus a term derived from the Coulomb interaction. The latter is essential to get good agreement with exact results. The phase of t gives rise to the usual Peierls factor, related to the flux through a square defined by the peaks of the Hartree wave functions. The magnitude of t decreases slowly with magnetic field as the Hartree functions become more localized, giving rise to the decreasing amplitude of the Aharonov-Bohm oscillations.

Item Type:Article
Additional Information:

© 2000 The American Physical Society.
The authors would like to thank Wolfgang Häusler and Colin Lambert for stimulating discussions. C.E.C. acknowledges support from the Leverhulme Foundation and from the EV within the TMR programme. Support from the U.K. Ministry of Defense and the E.U. TMR program is also acknowledged.

Uncontrolled Keywords:Interacting electrons
Subjects:Sciences > Physics > Materials
Sciences > Physics > Solid state physics
ID Code:33729
Deposited On:22 Oct 2015 18:03
Last Modified:22 Oct 2015 18:03

Origin of downloads

Repository Staff Only: item control page