Publication:
Non-equilibrium Liouville and Wigner equations: moment methods and long-time approximations

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2014-03
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Multidisciplinary Digital Publishing Institute
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We treat the non-equilibrium evolution of an open one-particle statistical system, subject to a potential and to an external "heat bath" (hb) with negligible dissipation. For the classical equilibrium Boltzmann distribution, W_c,eq, a non-equilibrium three-term hierarchy for moments fulfills Hermiticity, which allows one to justify an approximate long-time thermalization. That gives partial dynamical support to Boltzmann's W_c,eq, out of the set of classical stationary distributions, W_c,st, also investigated here, for which neither Hermiticity nor that thermalization hold, in general. For closed classical many-particle systems without hb (by using W_c,eq,), the long-time approximate thermalization for three-term hierarchies is justified and yields an approximate Lyapunov function and an arrow of time. The largest part of the work treats an open quantum one-particle system through the non-equilibrium Wigner function, W. W_eq for a repulsive finite square well is reported. W's (< 0 in various cases) are assumed to be quasi-definite functionals regarding their dependences on momentum (q). That yields orthogonal polynomials, H_Q,n (q), for W_eq (and for stationary W_st), non-equilibrium moments, W-n, of W and hierarchies. For the first excited state of the harmonic oscillator, its stationary W_st is a quasi-definite functional, and the orthogonal polynomials and three-term hierarchy are studied. In general, the non-equilibrium quantum hierarchies (associated with W_eq) for the W_n's are not three-term ones. As an illustration, we outline a non-equilibrium four-term hierarchy and its solution in terms of generalized operator continued fractions. Such structures also allow one to formulate long-time approximations, but make it more difficult to justify thermalization. For large thermal and de Broglie wavelengths, the dominant W_eq and a non-equilibrium equation for W are reported: the non-equilibrium hierarchy could plausibly be a three-term one and possibly not far from Gaussian, and thermalization could possibly be justified.
Description
© 2014 by the author. ©2014 Multidisciplinary Digital Publishing Institute. The author is grateful to the Editorial Office of Entropy and to the Guest Editor, Gian Paolo Beretta, for inviting him to contribute to the Special Issue Advances in Methods and Foundations on Non-Equilibrium Thermodynamics. The author acknowledges the financial support of Project FIS2012-35719-C02-01, Ministerio de Economia y Competitividad, Spain. He is an associate member of BIFI (Instituto de Biocomputacion y Fisica de los Sistemas Complejos), Universidad de Zaragoza, Zaragoza, Spain. Several discussions with Gabriel F. Calvo on the dynamics based either upon random walkers or on average densities have been quite useful.
Unesco subjects
Keywords
Citation
1. Wallace, D. Reading list for advanced philosophy of physics: The philosophy of statistical mechanics. Available online: http://www.osti.gov/eprints/topicpages/documents/record/366/4717199.html (accessed on 20 Febraury 2014). 2. Kreuzer, H. J. Nonequilibrium Thermodynamics and its Statistical Foundations; Clarendon Press: Oxford, UK, 1981. 3. Balescu, R. Equilibrium and Nonequilibrium Statistical Mechanics; John Wiley and Sons: New York, NY, USA, 1975. 4. Liboff, R.L. Kinetic Theory, 2nd ed.; John Wiley (Interscience): New York, NY, USA, 1998. 5. Zubarev, D.; Morozov V.G.; Röpke, G. Statistical Mechanics of Nonequilibrium Processes; Akademie Verlag: Berlin, Germany, 1996; Volume I. 6. Wigner, E.P. On the quantum correction for thermodynamic equilibrium. Phys. Rev. 1932, 40, 749–759. 7. Hillery, M.; O’Connell, R.F.; Scully, M.O.; Wigner, E.P. Distribution functions in physics: Fundamentals. Phys. Rep. 1984, 106, 121–167. 8. Zakos, C.K.; Fairlie, D.B.; Curtwright, T.L. Quantum Mechanics in Phase Space. An Overview with Selected Papers; World Scientific Publication: Singapore, Singapore, 2005. 9. Callender, C. Thermodynamic Asymmetry in Time. In Stanford Encyclopedia of Philosophy, Fall 2011 ed.; Zalta, E.N., Ed.; Stanford University: Stanford, CA, USA, 2011. Available online: http://plato. stanford.edu/entries/time-thermo/ (accessed on 23 February 2014). 10. Penrose, O. Foundations of statistical mechanics. Rep. Progr. Phys. 1979, 42, 1937–2006. 11. Brinkman, H.C. Brownian motion in a field of force and the diffusion theory of chemical reactions. Physica 1956, 22, 29–34. 12. Risken, H. The Fokker-Planck Equation, 2nd ed.; Springer: Berlin, Germany, 1989. 13. Coffey, W.T.; Kalmykov, Y.P. The Langevin Equation, 3rd ed.; World Scientific: Singapore, Singapore, 2012. 14. Coffey,W.T.; Kalmykov, Y.P.; Titov, S.V.; Mulligan, B.P.Wigner function approach to the quantum Brownian motion of a particle in a potential. Phys. Chem. Chem. Phys. 2007, 9, 3361–3382. 15. Álvarez-Estrada, R.F. New hierarchy for the Liouville equation, irreversibility and Fokker-Planck-like structures. Ann. Phys. 2002, 11, 357–385. 16. Álvarez-Estrada, R.F. Liouville and Fokker-Planck dynamics for classical plasmas and radiation. Ann. Phys. 2006, 15, 379–415. 17. Álvarez-Estrada, R.F. Nonequilibrium quasi-classical effective meson gas: Thermalization. Eur. Phys. J. A 2007, 31, 761–765. 18. Álvarez-Estrada, R.F. Nonequilibrium quantum anharmonic oscillator and scalar field: High temperature approximations. Ann. Phys. 2009, 18, 391–409. 19. Álvarez-Estrada, R.F. Classical systems: Moments, continued fractions, long-time approximations and irreversibility. AIP Con. Proc. 2011, 1332, 261–264. 20. Álvarez-Estrada, R.F. Classical and quantum models in nonequilibrium statistical mechanics: Moment methods and long-time approximations. Entropy 2012, 14, 291–322. 21. Álvarez-Estrada, R.F. Brownian motion, quantum corrections and a generalization of the Hermite polynomials. J. Comput. Appl. Math. 2010, 233, 1453–1461. 22. Álvarez-Estrada, R.F. Quantum Brownian motion and generalizations of the Hermite polynomials. J. Comput. Appl. Math. 2011, 236, 7–18. 23. Hochstrasser, U.W. Orthogonal Polynomials. In Handbook of Mathematical Functions; Abramowitz, M., Stegun, I.A., Eds.; Dover: New York, NY, USA, 1965. 24. Barreiro, L.A., Campanha, J.R.; Lagos, R.E. The thermohydrodynamical picture of Brownian motion via a generalized Smoluchowski equation. Physica A 2000, 283, 160–165. 25. Doi, M; Edwards, S.F. The Theory of Polymer Dynamics; Oxford University Press: Oxford, UK, 1988. 26. Chihara, T.S. An Introduction to Orthogonal Polynomials; Gordon and Breach: New York, NY, USA, 1978. 27. Penrose, O.; Coveney, P.V. Is there a “canonical” non-equilibrium ensemble? Proc. R. Soc. Lond. 1994, A447, 631–646. 28. Beretta, G.P. Modeling non-Equilibrium dynamics of a discrete probability distribution: General rate equation for maximal entropy generation in a maximum-entropy landscape with timedependent constraints. Entropy 2008, 10, 160–182. 29. Lebon, G.; Jou, D.; Casas-Vazquez, J. Understanding Non-Equilibrium Thermodynamics; Oxford University Press: Oxford, UK, 2008. 30. Rubi, J.M. The non-equilibrium thermodynamics approach to the dynamics of mesoscopic systems. J. Non-Equilib. Thermodyn. 2004, 29, 315–326. 31. Reguera, D. Mesoscopic nonequilibrium kinetics of nucleation processes. J. Non-Equilib. Thermodyn. 2004, 29, 327–344. 32. Maes, C. Nonequilibrium entropies. Phys. Scr. 2012, 86 , 058509. 33. Gyftopoulos, E.P.; Beretta, G.P. Thermodynamics. Foundations and Applications; Dover: New York, NY, USA, 2005. 34. Van Kampen, N.G. Stochastic Processes in Physics and Chemistry; Elsevier: Amsterdam, The Netherlands, 2001. 35. Gardiner, C.W.; Zoller, P. Quantum Noise, 3rd ed.; Springer: Berlin, Germany, 2004. 36. Weiss, U. Quantum Dissipative Systems, 4th ed.; World Scientific: Singapore, Singapore, 2012. 37. Breuer, H.-P.; Petruccione, F. The Theory of Open Quantum Systems; Oxford University Press: Oxford, UK, 2006. 38. Rivas, A.; Huelga, S.F. Open Quantum Systems. An Introduction; Springer: Heidelberg, Germany, 2011. 39. Hudson, R.L. When is theWigner quasi-probability density non-negative? Rep. Math. Phys. 1974, 6, 249–252. 40. Piquet, C. Fonctions du type positif associees a deux operateurs hermitiens. C. R. Acad. Sci. Paris 1974, 279A, 107–109. (in French) 41. Schleich, W.P. Quantum Optics in Phase Space; Wiley VCH: Berlin, Germany, 2001. 42. Dahl, J.P. Springborg. The Morse oscillator in position space, momentum space and phase space. J. Chem. Phys. 1988, 88, 4535–4547. 43. Bund, G.W.; Tijero, M.C. Mapping the Wigner distribution function of the Morse oscillator into a semi-classical distribution function. 2003, arXiv:quant-ph/0304092v1. 44. Hug, M.; Menke, C.; Schleich, W.P. How to calculate the Wigner function from phase space. J. Phys. Math. Gen. 1998, 31, L217–L224. 45. Louisell, W.H. Quantum Statistical Properties of Radiation; John Wiley and Sons: New York, NY, USA, 1973. 46. Haroche, S.; Raimond, J.-M. Exploring the Quantum; Oxford University Press: Oxford, UK, 2008. 47. Lindblad, G. On the generators of quantum dynamical semigroups. Commun. Math. Phys. 1976, 48, 119–130. 48. Huang, K. Statistical Mechanics, 2nd ed.; John Wiley and Sons: New York, NY, USA, 1987. 49. Munster, A. Statistical Thermodynamics; Springer: Berlin, Germany, 1969; Volume I. 50. Simon, B. The bound states of weakly coupled Schrödinger operators in one and two dimensions. Ann. Phys. 1976, 97, 279–288.
Collections