Publication:
Electronic excitation of furfural as probed by high-resolution vacuum ultraviolet spectroscopy, electron energy loss spectroscopy, and ab initio calculations

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2015-10-14
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Amer Inst Physics
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The electronic spectroscopy of isolated furfural (2-furaldehyde) in the gas phase has been investigated using high-resolution photoabsorption spectroscopy in the 3.5-10.8 eV energy-range, with absolute cross section measurements derived. Electron energy loss spectra are also measured over a range of kinematical conditions. Those energy loss spectra are used to derive differential cross sections and in turn generalised oscillator strengths. These experiments are supported by ab initio calculations in order to assign the excited states of the neutral molecule. The good agreement between the theoretical results and the measurements allows us to provide the first quantitative assignment of the electronic state spectroscopy of furfural over an extended energy range. (C) 2015 AIP Publishing LLC.
Description
©2015 AIP Publishing LLC Artículo firmado por 18 autores. F.F.S. and P.L.V. acknowledge the Portuguese Foundation for Science and Technology (FCT-MEC) through Grant Nos. SFRH/BPD/68979/2010 and SFRH/BSAB/105792/2014, respectively, the research Grant Nos. PTDC/FIS-ATO/1832/2012 and UID/FIS/00068/2013. P.L.V. also acknowledges his Visiting Research Fellow position at Flinders University, Adelaide, South Australia. The Patrimoine of the University of Liege, the Fonds National de la Recherche Scientifique, and the Fonds de la Recherche Fondamentale Collective of Belgium have also supported this research. E.L. and R.F.C.N. thank CNPq (Brazil) and the Science Without Borders Programme for opportunities to study abroad. The authors wish to acknowledge the beam time at the ISA synchrotron at Aarhus University, Denmark. The research leading to these results has received funding from the European Community's Seventh Framework Programme (Grant No. FP7/2007-2013) CALIPSO under Grant Agreement No. 312284. D.B.J. thanks the Australian Research Council for financial support provided through a Discovery Early Career Research Award. M.J.B. also thanks the Australian Research Council for some financial support, while M.J.B. and M.C.A.L. acknowledge the Brazilian agencies CNPq and FAPEMIG for financial support. F.B. and G.G. acknowledge partial financial support from the Spanish Ministry MINECO (Project No. FIS2012-31230) and the EU COST Action No. CM1301 (CELINA). Finally, R.F.C., M.T.do N.V., M.H.F.B., and M.A.P.L. acknowledge support from the Brazilian agency CNPq.
UCM subjects
Keywords
Citation
1 A. S. Mamman, J.-M. Lee, Y.-C. Kim, I. T. Hwang, N.-J. Park, Y. K. Hwang, J.-S. Chang, and J.-S. Hwang, Biofuels, Bioprod. Biorefin. 2, 438 (2008). 2 M. D’Angelantonio, S. S. Emmi, G. Poggi, and G. Beggiato, J. Phys. Chem. A 103, 858 (1999). 3 A. J. Ragauskas, C. K. Williams, B. H. Davison, G. Britovsek, J. Cairney, C.A.Eckert,W. J.Frederick, J.P. Hallett,D.J.Leak,C.L.Liotta, J.R.Mielenz, R. Murphy, R. Templer, and T. Tschaplinski, Science 311, 484 (2006). 4 H. Gomez Bernal, L. Bernazzani, and A. M. Raspolli Galletti, Green Chem. 16, 3734 (2014). 5 J.-P. Lange, E. van der Heide, J. van Buijtenen, and R. Price, ChemSusChem 5, 150 (2012). 6 J. D. Keating, C. Panganiban, and S. D. Mansfield, Biotechnol. Bioeng. 93, 1196 (2006). 7 P. Pienkos and M. Zhang, Cellulose 16, 743 (2009). 8 L. D. Schmidt and P. J. Dauenhauer, Nature 447, 914 (2007). 9 J. Amorim, C. Oliveira, J. A. Souza-Corrêa, and M. A. Ridenti, Plasma Process. Polym. 10, 670 (2013). 10 N. Schultz-Jensen, F. Leipold, H. Bindslev, and A. Thomsen, Appl. Biochem. Biotechnol. 163, 558 (2011). 11 J. S. Bak, J. K. Ko, Y. H. Han, B. C. Lee, I.-G. Choi, and K. H. Kim, Bioresour. Technol. 100, 1285 (2009). 12 A. W. Khan, J. P. Labrie, and J. McKeown, Biotechnol. Bioeng. 28, 1449 (1986). 13 R. F. da Costa, E. M. de Oliveira, M. H. F. Bettega, M. T. d. N. Varella, D. B. Jones, M. J. Brunger, F. Blanco, R. Colmenares, P. Limão-Vieira, G. García, and M. A. P. Lima, J. Chem. Phys. 142, 104304 (2015). 14 R. F. C. Neves, D. B. Jones, M. C. A. Lopes, K. L. Nixon, G. B. da Silva, H. V. Duque, E. M. de Oliveira, R. F. da Costa, M. T. d. N. Varella, M. H. F. Bettega, M. A. P. Lima, K. Ratnavelu, G. García, and M. J. Brunger, J. Chem. Phys. 142, 104305 (2015). 15 D. B. Jones, G. B. da Silva, R. F. C. Neves, H. V. Duque, L. Chiari, E. M. de Oliveira, M. C. A. Lopes, R. F. da Costa, M. T. d. N.Varella, M. H. F. Bettega, M. A. P. Lima, and M. J. Brunger, J. Chem. Phys. 141, 074314 (2014). 16 D. B. Jones, E. Ali, K. L. Nixon, P. Limão-Vieira, M.-J. Hubin-Franskin, J. Delwiche, C. G. Ning, J. Colgan, A. Murray, D. H. Madison, and M. J. Brunger, “Electron- and photon-impact ionization of furfural,” J. Chem. Phys. (submitted). 17 A. D. Walsh, Trans. Faraday Soc. 42, 62 (1946). 18 V. Santhamma, Proc. Natl. Acad. Sci., India, Sect. A 22, 256 (1956). 19 J. E. Purvis, J. Chem. Soc. 97, 1648 (1910). 20 A. Gandini, P. A. Hackett, and R. A. Back, Can. J. Chem. 54, 3089 (1976). 21 R. Zwarich and I. Rabinowitz, J. Chem. Phys. 63, 4565 (1975). 22 R. F. da Costa, M. H. F. Bettega, M. A. P. Lima, M. C. A. Lopes, L. R. Hargreaves, G. Serna, and M. A. Khakoo, Phys. Rev. A 85, 062706 (2012). 23 A. Giuliani, J. Delwiche, S. V. Hoffmann, P. Limão-Vieira, N. J. Mason, and M.-J. Hubin-Franskin, J. Chem. Phys. 119, 3670 (2003). 24 A. Giuliani, I. C. Walker, J. Delwiche, S. V. Hoffmann, C. Kech, P. Limão-Vieira, N. J. Mason, and M.-J. Hubin-Franskin, J. Chem. Phys. 120, 10972 (2004). 25 A. Giuliani, I. C. Walker, J. Delwiche, S. V. Hoffmann, P. Limao-Vieira, N. J. Mason, B. Heyne, M. Hoebeke, and M. J. Hubin-Franskin, J. Chem. Phys. 119, 7282 (2003). 26 F. Kossoski and M. H. F. Bettega, J. Chem. Phys. 138, 234311 (2013). 27 I. C. Walker, M. H. Palmer, J. Delwiche, S. V. Hoffmann, P. Limão-Vieira, N. J. Mason, M. F. Guest, M.-J. Hubin-Franskin, J. Heinesch, and A. Giuliani, Chem. Phys. 297, 289 (2004). 28 R. A. Motiyenko, E. A. Alekseev, S. F. Dyubko, and F. J. Lovas, J. Mol. Spectrosc. 240, 93 (2006). 29 F. A. Miller,W. G. Fateley, and R. E.Witkowski, Spectrochim. Acta, Part A 23, 891 (1967). 30 M. Rogojerov, G. Keresztury, and B. Jordanov, Spectrochim. Acta, Part A 61, 1661 (2005). 31 A. Gandini, J. M. Parsons, and R. A. Back, Can. J. Chem. 54, 3095 (1976). 32 D. Klapstein, C. D. MacPherson, and R. T. O’Brien, Can. J. Chem. 68, 747 (1990). 33 S. Eden, P. Limão-Vieira, S. V. Hoffmann, and N. J. Mason, Chem. Phys. 323, 313 (2006). 34 M. H. Palmer, T. Ridley, S. V. Hoffmann, N. C. Jones, M. Coreno, M. de Simone, C. Grazioli, M. Biczysko, A. Baiardi, and P. Limão-Vieira, J. Chem. Phys. 142, 134302 (2015). 35 M. J. Brunger and P. J. O. Teubner, Phys. Rev. A 41, 1413 (1990). 36 S. J. Cavanagh and B. Lohmann, J. Phys. B: At., Mol. Opt. Phys. 32, L261 (1999). 37 F. Blanco and G. García, J. Phys. B: At., Mol. Opt. Phys. 42, 145203 (2009). 38 F. Blanco and G. García, Phys. Lett. A 330, 230 (2004). 39 R. F. da Costa, M. A. P. Lima, M. H. F. Bettega, E. M. de Oliveira, M. T. d. N. Varella, G. Garcia, D. B. Jones, and M. J. Brunger, “Elastic electron collisions with furfural: an investigation on the behavior of the cross sections under the influence of multichannel coupling effects” (unpublished). 40 P. Palihawadana, J. Sullivan, M. Brunger, C.Winstead,V.McKoy, G. Garcia, F. Blanco, and S. Buckman, Phys. Rev. A 84, 062702 (2011). 41 L. R. Hargreaves, J. R. Brunton, A. Prajapati, M. Hoshino, F. Blanco, G. Garcia, S. J. Buckman, and M. J. Brunger, J. Phys. B: At., Mol. Opt. Phys. 44, 045207 (2011). 42 H. Kato, T. Asahina, H. Masui, M. Hoshino, H. Tanaka, H. Cho, O. Ingolfsson, F. Blanco, G. Garcia, S. J. Buckman, and M. J. Brunger, J. Chem. Phys. 132, 074309 (2010). 43 E. N. Lassettre, J. Chem. Phys. 43, 4479 (1965). 44 A. R. P. Rau and U. Fano, Phys. Rev. 162, 68 (1967). 45 L. Vriens, Phys. Rev. 160, 100 (1967). 46 B. R. Lewis, Phys. Rev. A 78, 026701 (2008). 47 H. Kawahara, H. Kato, M. Hoshino, H. Tanaka, and M. J. Brunger, Phys. Rev. A 77, 012713 (2008). 48 H. Kawahara, D. Suzuki, H. Kato, M. Hoshino, H. Tanaka, O. Ingolfsson, L. Campbell, and M. J. Brunger, J. Chem. Phys. 131, 114307 (2009). 49 H. Kato, M. Hoshino, H. Tanaka, P. Limão-Vieira, O. Ingolfsson, L. Campbell, and M. J. Brunger, J. Chem. Phys. 134, 134308 (2011). 50 M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, J. Comput. Chem. 14, 1347 (1993). 51 K. K. Baldridge, V. Jonas, and A. D. Bain, J. Chem. Phys. 113, 7519 (2000). 52 R. Bauernschmitt and R. Ahlrichs, Chem. Phys. Lett. 256, 454 (1996). 53 M. E. Casida, J. Mol. Struct.: THEOCHEM 914, 3 (2009). 54 M. J. Frisch et al.,GAUSSIAN 09, Revision B.01, Gaussian, Inc., Wallington, CT, USA, 2010. 55 I. Colmenar, S. González, E. Jiménez, P. Martín, S. Salgado, B. Cabañas, and J. Albaladejo, Atmos. Environ. 103, 1 (2015). 56 Ed. C. Sándorfy, The Role of Rydberg States in Spectroscopy and Photochemistry (Kluwer Academic Publishers, Netherlands, 1999). 57 S. Eden, P. Limão-Vieira, S. V. Hoffmann, and N. J. Mason, Chem. Phys. 331, 232 (2007). 58 W. B. DeMore, S. P. Sander, D. M. Golden, R. F. Hampson, M. J. Kurylo, C. J. Howard, A. R. Ravishankara, C. E. Kolb, and M. J. Molina, Chemical Kinetics and Photochemical Data for Use in Stratospheric Modelling, Evaluation No. 12 (JPL Publication 97–4, 1997). 59 P. Limão Vieira, S. Eden, P. A. Kendall, N. J. Mason, and S. V. Hoffmann, Chem. Phys. Lett. 364, 535 (2002). 60 R. F. da Costa, M. T. d. N. Varella, M. H. F. Bettega, and M. A. P. Lima, Eur. Phys. J. D 69, 159 (2015).
Collections