Publication:
Kinetic energy-conserving hyperdiffusion can improve low resolution atmospheric models

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2015-09
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Geophysical Union
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Motivated by findings that energetically consistent subgrid dissipation schemes can improve eddy-permitting ocean simulations, this work investigates the impact of the subgrid dissipation scheme on low-resolution atmospheric dynamical cores. A kinetic energy-conserving dissipation scheme is implemented in the model adding a negative viscosity term that injects back into the eddy field the kinetic energy dissipated by horizontal hyperdiffusion. The kinetic energy-conserving scheme enhances numerical convergence when horizontal resolution is changed with fixed vertical resolution and gives superior low-resolution results. Improvements are most obvious for eddy kinetic energy but also found in other fields, particularly with strong or little scale-selective horizontal hyperdiffusion. One advantage of the kinetic energy-conserving scheme is that it reduces the sensitivity of the model to changes in the subgrid dissipation rate, providing more robust results.
Description
© 2015. The Authors. © 2015 American Geophysical Union. P.Z.G is funded by grant CGL2012-30641 by the Ministry of Economy and Research of Spain. The results presented in this work were obtained using the spectral dynamical core available at http://www.gfdl.noaa.gov/fms and the kinetic energy-conserving subgrid scheme described in the manuscript. The output data for all simulations in the paper are stored in the Geophysical Fluid Dynamics Laboratory archive system and can be obtained from the first author (pzurita@alum.mit.edu) upon request. We are grateful to Ed Gerber and an anonymous reviewer for their thorough reviews and pertinent suggestions.
Unesco subjects
Keywords
Citation
Berner, J., G. Shutts, M. Leutbecher, and T. Palmer (2009), A spectral stochastic kinetic energy backscatter scheme and its impact on flowdependent predictability in the ecmwf ensemble prediction system, J. Atmos. Sci., 66(3), 603–626. Berner, J., T. Jung, and T. Palmer (2012), Systematic model error: The impact of increased horizontal resolution versus improved stochastic and deterministic parameterizations, J. Clim., 25(14), 4946–4962. Boer, G., and B. Denis (1997), Numerical convergence of the dynamics of a GCM, Clim. Dyn., 13, 359–374. Boville, B. A. (1991), Sensitivity of simulated climate to resolution, J. Clim., 4, 469–485. Charney, J. G. (1971), Geostrophic turbulence, J. Atmos. Sci., 28, 1087–1094. Delworth, T. L., et al. (2012), Simulated climate and climate change in the GFDL CM2.5 high-resolution coupled climate model, J. Clim., 25, 2755–2781. Dubos, T. (2005), Frame invariance and conservation in two-dimensional subgrid models, Physica D, 202(1), 1–15. Frederiksen, J. S., and A. G. Davies (1997), Eddy viscosity and stochastic backscatter parameterizations on the sphere for atmospheric circulation models, J. Atmos. Sci., 54(20), 2475–2492. Gerber, E., and G. Vallis (2007), Eddy-zonal flow interactions and the persistence of the zonal index, J. Atmos. Sci., 64, 3296–3311. Gerber, E. P., S. Voronin, and L. M. Polvani (2008), Testing the annular mode autocorrelation timescale in simple atmospheric general circulation models, Mon. Weather Rev., 136, 1523–1536, doi:10.1175/2007MWR2211.1. Guemas, V., and F. Codron (2011), Differing impacts of resolution changes in latitude and longitude on the midlatitudes in the LMDZ atmospheric GCM, J. Clim., 24, 5831–5849. Hack, J., J. M. Caron, G. Danabasoglu, K. W. Oleson, C. Bitz, and J. E. Truesdale (2006), CCSMCAM3 climate simulation sensitivity to changes in horizontal resolution, J. Clim., 19, 2267–2289. Hallberg, R. (2013), Using a resolution function to regulate parameterizations of oceanic mesoscale eddy effects, Ocean Modell., 72, 92–103. Hecht, M., D. Holm, M. Petersen, and B. Wingate (2008), The lans-a and leray turbulence parameterizations in primitive equation ocean modeling, J. Phys. A Math. Theor., 41(34), 344009. Held, I. M., and P. J. Phillips (1987), Linear and nonlinear barotropic decay on the sphere, J. Atmos. Sci., 44, 200–207. Held, I. M., and M. J. Suarez (1994), A proposal for the intercomparison of the dynamical cores of atmospheric general-circulation models, Bull. Am. Meteorol. Soc., 75, 1825–1830. Jablonowski, C., and D. L. Williamson (2011), The pros and cons of diffusion, filters and fixers in atmospheric general circulation models, in Numerical Techniques for Global Atmospheric Models, edited by P. H. Lauritzen, et al., pp. 381–493, Springer-Verlag, Berlin Heidelberg. Jansen, M., and R. Ferrari (2012), Macroturbulent equilibration in a thermally forced primitive equation system, J. Atmos. Sci., 69, 695–713. Jansen, M. F., and I. M. Held (2014), Parameterizing subgrid-scale eddy effects using energetically consistent backscatter, Ocean Modell., 80, 36–48, doi:10.1016/j.ocemod.2014.06.002. Jansen, M. F., I. M. Held, A. J. Adcroft, and R. Hallberg (2015), Energy budget-based backscatter in an eddy permitting primitive equation model. Submitted to Ocean Modell. Killworth, P. D., and M. E. McIntyre (1985), Do Rossby-waves critical layers absorb, reflect or over-reflect?, J. Fluid Mech., 161, 449–492. Kraucunas, I., and D. L. Hartmann (2005), Equatorial superrotation and the factors controlling the zonal-mean zonal winds in the tropical upper troposphere, J. Atmos. Sci., 62, 371–389. Lapeyre, G., and I. M. Held (2003), Diffusivity, kinetic energy dissipation, and closure theories for the poleward eddy heat flux, J. Atmos. Sci., 60, 2907–2916. Larichev, V. D., and I. M. Held (1995), Eddy amplitudes and fluxes in a homogeneous model of fully-developed baroclinic instability, J. Phys. Oceanogr., 25, 2285–2297. Lauritzen, P., et al. (2014), A standard test case suite for two-dimensional linear transport on the sphere: Results from a collection of stateof- the-art schemes, Geosci. Model Dev., 7(1), 105–145. Liu, Z., et al. (2009), Transient simulation of last deglaciation with a new mechanism for Blling-Allerd warming, Science, 325, 310, doi: 10.1126/science.1171041. Lorenz, D. (2014), Understanding midlatitude jet variability and change using Rossby wave chromatography: Wave-mean flow interaction, J. Atmos. Sci., 71, 3684–3705. Lorenz, D., and D. Hartmann (2001), Eddy-zonal flow feedback in the Southern Hemisphere, J. Atmos. Sci., 58, 3312–3327. Lorenz, E. N. (1967), The Nature and Theory of the General Circulation of the Atmosphere., 161 pp., World Meteorological Organization, Geneva. Lutsko, N. J., I. M. Held, and P. Zurita-Gotor (2015), Applying the fluctuation-dissipation theorem to a two-layer Model of Quasi-Geostrophic Turbulence, J. Atmos. Sci., 72, in press. MacVean, M. (1983), The effects of horizontal diffusion on baroclinic development in a spectral model, Quarterly Journal of the Royal Meteorological Society, 109(462), 771–783. Montoya, M., A. Griesel, A. Levermann, J. Mignot, M. Hofmann, A. Ganopolski, and S. Rahmstorf (2005), The earth system model of intermediate complexity CLIMBER-3. Part I: Description and performance for present day conditions, Clim. Dyn., 25, 237–263. Peixoto, J. P., and A. H. Oort (1992), Physics of Climate, Am. Inst. of Phys., N. Y. Pope, V., and R. Stratton (2002), The processes governing horizontal resolution sensitivity in a climate model, Clim. Dyn., 19, 211–236. Ring, M. J., and R. A. Plumb (2008), The response of a simplified GCM to axisymmetric forcings: Applicability of the fluctuation-dissipation theorem, J. Atmos. Sci., 65, 3830–3898. Sanchez, C., K. D. Williams, G. J. Shutts, R. E. McDonald, T. J. Hinton, C. A. Senior, and N. Wood (2013), Towards the development of a robust model hierarchy: Investigation of dynamical limitations at low resolution and possible solutions, Q. J. R. Meteorol. Soc., 139(670), 75–84. Sanchez, C., K. D. Williams, G. Shutts, and M. Collins (2014), Impact of a stochastic kinetic energy backscatter scheme across time-scales and resolutions, Q. J. R. Meteorol. Soc., 140(685), 2625–2637. Sato, T., H. Miura, M. Satoh, Y. N. Takayabu, and Y. Wang (2009), Diurnal cycle of precipitation in the tropics simulated in a global cloudresolving model, J. Clim., 22, 4809–4826, doi:10.1175/2009JCLI2890.1. Schneider, T., and C. C. Walker (2006), Self-organization of atmospheric macroturbulence into critical states of weak nonlinear eddy-eddy interactions, J. Atmos. Sci., 63, 1569–1586. Shaffrey, L. C., et al. (2009), U.K. HiGEM: The new U.K. High-Resolution Global Environment ModelModel description and basic evaluation, J. Clim. 22, 1861–1896. Shields, C. A., D. A. Bailey, G. Danabasoglu, M. Jochum, T. Kiehl, S. Leves, and S. Park (2012), The low-resolution CCSM4, J. Clim., 25, 3993–4014, doi:10.1175/JCLI-D-11-00260.1. Shutts, G. (2005), A kinetic energy backscatter algorithm for use in ensemble prediction systems, Q. J. R. Meteorol. Soc., 131(612), 3079–3102. Shutts, G. (2013), Coarse graining the vorticity equation in the ecmwf integrated forecasting system: The search for kinetic energy backscatter, J. Atmos. Sci., 70(4), 1233–1241. Smith, R. S., and J. Gregory (2012), The last glacial cycle: Transient simulations with an AOGCM, Clim. Dyn., 38, 1545–1559, doi:10.1007/s00382-011-1283-y. Steinhoff, J., and D. Underhill (1994), Modification of the Euler equations for vorticity confinement: Application to the computation of interacting vortex rings, Phys. Fluids, 6(8), 2738–2744. Tennant, W. J., G. J. Shutts, A. Arribas, and S. A. Thompson (2011), Using a stochastic kinetic energy backscatter scheme to improve mogreps probabilistic forecast skill, Mon. Weather Rev., 139(4), 1190–1206. Thuburn, J., J. Kent, and N. Wood (2014), Cascades, backscatter and conservation in numerical models of two-dimensional turbulence, Q. J. R. Meteorol. Soc., 140, 626–638. Timm, O., and A. Timmerman (2007), Simulation of the last 21 000 years using accelerated transient boundary conditions, J. Clim., 20, 4377–4401, doi:10.1175/JCLI4237.1. Wan, H., M. Giorgetta, and L. Bonaventura (2008), Ensemble HeldSuarez test with a spectral transform model: Variability, sensitivity, and convergence, Mon. Weather Rev., 136, 1075–1092. Williamson, D. (1999), Convergence of atmospheric simulations with increasing horizontal resolution and fixed forcing scales, Tellus, Ser. A, 51, 663–673. Zurita-Gotor, P., J. Blanco-Fuentes, and E. P. Gerber (2014), The impact of baroclinic eddy feedback on the persistence of jet variability in the two-layer model, J. Atmos. Sci., 71, 410–429.
Collections