Publication:
Cohomologically rigid solvable Lie algebras with a nilradical of arbitrary characteristic sequence.

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2016
Authors
Campoamo-Stursberg, Rutwig
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Science
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
It is shown that for a finite-dimensional solvable rigid Lie algebra r, its rank is upper bounded by the length of the characteristic sequence c(n) of its nilradical n. For any characteristic sequence c = (n(1),..., n(k,) 1), it is proved that there exists at least a solvable Lie algebra re the nilradical of which has this characteristic sequence and that satisfies the conditions H-p (r(c), r(c)) = 0 for p <= 3.
Description
Keywords
Citation
[1] J.M. Ancochea, M. Goze, Le rang du système linéaire des racines d’une algèbre de Lie rigide résoluble complexe,Comm. Algebra 20 (1992) 875–887. [2] J.M. Ancochea, R. Campoamor-Stursberg, Two-step solvable Lie algebras and weight graphs, Transform.Groups 7 (2002)307–320. [3] J.M. Ancochea, R. Campoamor-Stursberg, L. Garcia Vergnolle, M. Goze, Algèbres résolubles réelles algébriquement rigides, Monatsh. Math. 152 (2007) 187–195. [4] R. Carles, Sur la structure des algèbres de Lie rigides, Ann. Inst. Fourier 34 (1984) 65–82. [5] R. Carles, Sur certaines classes d’algèbres de Lie rigides, Math. Ann. 272 (1985) 477–488. [6] J. Dixmier, Cohomologie des algèbres de Lie nilpotentes, Acta Sci. Math. (Szeged) 16 (1955) [7] G. Favre, Système des poids sur une algèbre de Lie nilpotente, Manuscripta Math. 9 (1973) 53–90. [8] A. Fialowski, J. O’Halloran, A comparison of deformations and orbit closure, Comm. Algebra 18 (1990) 4121–4140. [9] A. Fialowski, M. Schlichenmaier, Global geometric deformations of current algebras as Krichever–Novikov type algebras, Comm. Math. Phys. 260 (2005) 579–612. [10] A. Fialowski, Deformations and contractions of algebraic structures, Proc. Steklov Inst. Math. 286 (2014) 240–252. [11] M. Gerstenhaber, On the deformation of rings and algebras I–IV, Ann. of Math. 79 (1964) 59–104; 84 (1966) 1–19; 88 (1968) 1–34; 99 (1974) 257–276. [12] M. Goze, J.M. Ancochea, On the classification of rigid Lie algebras, J. Algebra 245 (2001) 68–91. [13] E. Inönü, E.P. Wigner, On the contraction of groups and their representations, Proc. Natl. Acad. Sci. USA 39 (1953) 510–524. [14] G. Leger, E. Luks, Cohomology theorems for Borel-like solvable Lie algebras in arbitrary characteristic, Canad. J. Math. 24 (1972) 1019–1026. [15] A.I. Mal’cev, Solvable Lie algebras, Izv. Akad. Nauk SSSR 9 (1945) 329–356. [16] A. Nijenhuis, R.W. Richardson, Deformations of Lie algebra structures, J. Math. Mech. 17 (1967) 89–105. [17] G. Rauch, Effaçement et déformation, Ann. Inst. Fourier 22 (1972) 239–269. [18] R.W. Richardson, On the rigidity of semi-direct products of Lie algebras, Pacific J. Math. 22 (1967) 339–344. [19] L. Šnobl, P. Winternitz, Classification and Identification of Lie Algebras, CRM Monogr. Ser., vol. 33, Amer. Math. Soc., 2014. [20] E. Weimar-Woods, Contractions, generalized Inönü–Wigner contractions and deformations of finitedimensional Lie algebras, Rev. Math. Phys. 12 (2000) 1505–1529.
Collections