Publication:
Cohomologically rigid solvable Lie algebras with a nilradical of arbitrary characteristic sequence.

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2016
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Science
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
It is shown that for a finite-dimensional solvable rigid Lie algebra r, its rank is upper bounded by the length of the characteristic sequence c(n) of its nilradical n. For any characteristic sequence c = (n(1),..., n(k,) 1), it is proved that there exists at least a solvable Lie algebra re the nilradical of which has this characteristic sequence and that satisfies the conditions H-p (r(c), r(c)) = 0 for p <= 3.
Description
Keywords
Citation
[1] J.M. Ancochea, M. Goze, Le rang du système linéaire des racines d’une algèbre de Lie rigide résoluble complexe,Comm. Algebra 20 (1992) 875–887. [2] J.M. Ancochea, R. Campoamor-Stursberg, Two-step solvable Lie algebras and weight graphs, Transform.Groups 7 (2002)307–320. [3] J.M. Ancochea, R. Campoamor-Stursberg, L. Garcia Vergnolle, M. Goze, Algèbres résolubles réelles algébriquement rigides, Monatsh. Math. 152 (2007) 187–195. [4] R. Carles, Sur la structure des algèbres de Lie rigides, Ann. Inst. Fourier 34 (1984) 65–82. [5] R. Carles, Sur certaines classes d’algèbres de Lie rigides, Math. Ann. 272 (1985) 477–488. [6] J. Dixmier, Cohomologie des algèbres de Lie nilpotentes, Acta Sci. Math. (Szeged) 16 (1955) [7] G. Favre, Système des poids sur une algèbre de Lie nilpotente, Manuscripta Math. 9 (1973) 53–90. [8] A. Fialowski, J. O’Halloran, A comparison of deformations and orbit closure, Comm. Algebra 18 (1990) 4121–4140. [9] A. Fialowski, M. Schlichenmaier, Global geometric deformations of current algebras as Krichever–Novikov type algebras, Comm. Math. Phys. 260 (2005) 579–612. [10] A. Fialowski, Deformations and contractions of algebraic structures, Proc. Steklov Inst. Math. 286 (2014) 240–252. [11] M. Gerstenhaber, On the deformation of rings and algebras I–IV, Ann. of Math. 79 (1964) 59–104; 84 (1966) 1–19; 88 (1968) 1–34; 99 (1974) 257–276. [12] M. Goze, J.M. Ancochea, On the classification of rigid Lie algebras, J. Algebra 245 (2001) 68–91. [13] E. Inönü, E.P. Wigner, On the contraction of groups and their representations, Proc. Natl. Acad. Sci. USA 39 (1953) 510–524. [14] G. Leger, E. Luks, Cohomology theorems for Borel-like solvable Lie algebras in arbitrary characteristic, Canad. J. Math. 24 (1972) 1019–1026. [15] A.I. Mal’cev, Solvable Lie algebras, Izv. Akad. Nauk SSSR 9 (1945) 329–356. [16] A. Nijenhuis, R.W. Richardson, Deformations of Lie algebra structures, J. Math. Mech. 17 (1967) 89–105. [17] G. Rauch, Effaçement et déformation, Ann. Inst. Fourier 22 (1972) 239–269. [18] R.W. Richardson, On the rigidity of semi-direct products of Lie algebras, Pacific J. Math. 22 (1967) 339–344. [19] L. Šnobl, P. Winternitz, Classification and Identification of Lie Algebras, CRM Monogr. Ser., vol. 33, Amer. Math. Soc., 2014. [20] E. Weimar-Woods, Contractions, generalized Inönü–Wigner contractions and deformations of finitedimensional Lie algebras, Rev. Math. Phys. 12 (2000) 1505–1529.
Collections