Publication:
Least-bias state estimation with incomplete unbiased measurements

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2015-11
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Measuring incomplete sets of mutually unbiased bases constitutes a sensible approach to the tomography of high-dimensional quantum systems. The unbiased nature of these bases optimizes the uncertainty hypervolume. However, imposing unbiasedness on the probabilities for the unmeasured bases does not generally yield the estimator with the largest von Neumann entropy, a popular figure of merit in this context. Furthermore, this imposition typically leads to mock density matrices that are not even positive definite. This provides a strong argument against perfunctory applications of linear estimation strategies. We propose to use instead the physical state estimators that maximize the Shannon entropy of the unmeasured outcomes, which quantifies our lack of knowledge fittingly and gives physically meaningful statistical predictions.
Description
©2015 American Physical Society. Many of the ideas in this paper originated at the Workshop on Mathematical Methods of Quantum Tomography at Fields Institute (Toronto). Z.H., J.R., and Y.S.T. are grateful for the support of the European Social Fund and the state budget of the Czech Republic [Project No. CZ.1.07/2.3.00/30.0004 (POST-UP)], the Grant Agency of the Czech Republic (Grant No. 15-031945), the IGA Project of the Palacky University (Grant No. IGA PrF 2015-002), and the sustainability of postdoc positions at Palacky University. L.L. S.S. acknowledges the support from UCM-Banco Santander Program (Grant No. GR3/14) and helpful discussions with M. Grassl. H.K.N.'s, J.H.C.'s, and B.-G.E.'s work was funded by the Singapore Ministry of Education (partly through the Academic Research Fund Tier 3 MOE2012-T3-1-009) and the National Research Foundation of Singapore. H.K.N. was also funded by a Yale-NUS College start-up grant.
Keywords
Citation
[1] Quantum State Estimation, Lecture Notes in Physics Vol. 649, edited byM.G.A. Paris and J. Řeháček (Springer, Berlin, 2004). [2] E. Prugovečki, Information-theoretical aspects of quantum measurement, Int. J. Theor. Phys. 16, 321 (1977). [3] P. Busch and P. J. Lahti, The determination of the past and the future of a physical system in quantum mechanics, Found. Phys. 19, 633 (1989). [4] G. M. D’Ariano, P. Perinotti, and M. F. Sacchi, Informationally complete measurements and group representation, J. Opt. B: Quantum Semiclassical Opt. 6, S487 (2004). [5] S. T. Flammia, A. Silberfarb, and C. M. Caves, Minimal informationally complete measurements, Found. Phys. 35, 1985 (2005). [6] S. Weigert, Simple minimal informationally complete POVMs for qudits, Int. J. Mod. Phys. B 20, 1942 (2006). [7] T. Monz, P. Schindler, J. T. Barreiro, M. Chwalla, D. Nigg, W. A. Coish, M. Harlander, W. H¨ansel, M. Hennrich, and R. Blatt, 14-Qubit Entanglement: Creation and Coherence, Phys. Rev. Lett. 106, 130506 (2011). [8] X.-C. Yao, T.-X. Wang, P. Xu, H. Lu, G.-S. Pan, X.-H. Bao, C.-Z. Peng, C.-Y. Lu, Y.-A. Chen, and J.-W. Pan, Observation of eight-photon entanglement, Nat. Photon. 6, 225 (2012). [9] D. Gross, Y. K. Liu, S. T. Flammia, S. Becker, and J. Eisert, Quantum State Tomography via Compressed Sensing, Phys. Rev. Lett. 105, 150401 (2010). [10] S. T. Flammia, D. Gross, Y.-K. Liu, and J. Eisert, Quantum tomography via compressed sensing: error bounds, sample complexity and efficient estimators, New J. Phys. 14, 095022 (2012). [11] M. Guta, T. Kypraios, and I. Dryden, Rank-based model selection for multiple ions quantum tomography, New J. Phys. 14, 105002 (2012). [12] M. Cramer, M. B. Plenio, S. T. Flammia, R. Somma, D. Gross, S. D. Bartlett, O. Landon-Cardinal, D. Poulin, and Y. K. Liu, Efficient quantum state tomography, Nat. Commun. 1, 149 (2010). [13] T. Baumgratz, D. Gross, M. Cramer, and M. B. Plenio, Scalable Reconstruction of Density Matrices, Phys. Rev. Lett. 111, 020401 (2013). [14] O. Landon-Cardinal and D. Poulin, Practical learning method for multi-scale entangled states, New J. Phys. 14, 085004 (2012). [15] G. M. D’Ariano, L. Maccone, and M. Paini, Spin tomography, J. Opt. B: Quantum Semiclassical Opt. 5, 77 (2003). [16] G. Tóth,W.Wieczorek, D. Gross, R. Krischek, C. Schwemmer, and H. Weinfurter, Permutationally Invariant Quantum Tomography, Phys. Rev. Lett. 105, 250403 (2010). [17] A. B. Klimov, G. Björk, and L. L. Sánchez-Soto, Optimal quantum tomography of permutationally invariant qubits, Phys. Rev. A 87, 012109 (2013). [18] T. Moroder, P. Hyllus, G. Tóth, C. Schwemmer, A. Niggebaum, S.Gaile, O. Gühne, and H.Weinfurter, Permutationally invariant state reconstruction, New J. Phys. 14, 105001 (2012). [19] Y. S. Teo, H. Zhu, B.-G. Englert, J. Řeháček, and Z. Hradil, Quantum-State Reconstruction by Maximizing Likelihood and Entropy, Phys. Rev. Lett. 107, 020404 (2011). [20] Y. S. Teo, B. Stoklasa, B.-G. Englert, J. Řeháček, and Z. Hradil, Incomplete quantum state estimation: A comprehensive study, Phys. Rev. A 85, 042317 (2012). [21] Y. S. Teo, B.-G. Englert, J. Řeháček, Z. Hradil, and D.Mogilevtsev, Verification of state and entanglement with incomplete tomography, New J. Phys. 14, 105020 (2012). [22] D. S. Gonçalves, C. Lavor, M. A. Gomes-Ruggiero, A. T. Cesário, R. O. Vianna, and T. O. Maciel, Quantum state tomography with incomplete data: Maximum entropy and variational quantum tomography, Phys. Rev. A 87, 052140 (2013). [23] W. K. Wootters and B. D. Fields, Optimal state-determination by mutually unbiased measurements, Ann. Phys. 191, 363 (1989). [24] J. Schwinger, Unitary operator bases, Proc. Natl. Acad. Sci. U. S. A. 46, 570 (1960). [25] T. Durt, B.-G. Englert, I. Bengtsson, and K. Życzkowski, On mutually unbiased bases, Int. J. Quantum Inf. 8, 535 (2010). [26] Z. Hradil, J. Summhammer, and H. Rauch, Quantum tomography as normalization of incompatible observations, Phys. Lett. A 261, 20 (1999). [27] R. D. Cousins, Why isn’t every physicist a Bayesian?, Am. J. Phys. 63, 398 (1995). [28] E. T. Jaynes, in Probability Theory: The Logic of Science, edited by G. L. Bretthorst (Cambridge University Press, Cambridge, England, 2003). [29] I. D. Ivanovic, Geometrical description of quantal state determination, J. Phys. A 14, 3241 (1981). [30] S. Bandyopadhyay, P. O. Boykin, V. Roychowdhury, and F. Vatan, Anewproof for the existence of mutually unbiased bases, Algorithmica 34, 512 (2002). [31] A. Klappenecker and M. Rötteler, Constructions of mutually unbiased bases, in Finite Fields and Applications, LectureNotes in Computer Science Vol. 2948, edited by G. Mullen, A. Poli, and H. Stichtenoth (Springer, Berlin, 2003), pp. 137–144. [32] J. Lawrence, Mutually unbiased bases and trinary operator sets for N qutrits, Phys. Rev. A 70, 012302 (2004). [33] A. O. Pittenger and M. H. Rubin, Mutually unbiased bases, generalized spin matrices and separability, Linear AlgebraAppl. 390, 255 (2004). [34] K. R. Parthasarathy, On estimating the state of a finite level quantum system, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 7, 607 (2004). [35] P. Wocjan and T. Beth, New construction of mutually unbiased basis in square dimensions, Quantum Inf. Compu. 5, 93 (2005). [36] T. Durt, About mutually unbiased bases in even and odd prime power dimensions, J. Phys. A 38, 5267 (2005). [37] A. B. Klimov, L. L. Sánchez-Soto, and H. de Guise, Multicomplementary operators via finite Fourier transform, J. Phys. A 38, 2747 (2005). [38] A. B. Klimov, J. L. Romero, G. Björk, and L. L. Sánchez-Soto, Geometrical approach to mutually unbiased bases, J. Phys. A 40, 3987 (2007). [39] A. B. Klimov, J. L. Romero, G. Björk, and L. L. Sánchez-Soto, Discrete phase-space structure of n-qubit mutually unbiased bases, Ann. Phys. 324, 53 (2009). [40] P. S. Laplace, Memoire sur la probabilité des causes par les évènements, Mem. Acad. R. Sci. Paris 6, 621 (1774). [41] C. Schwemmer, L. Knips, D. Richart, H.Weinfurter, T.Moroder, M. Kleinmann, and O. Gühne, Systematic Errors in Current Quantum State Tomography Tools, Phys. Rev. Lett. 114, 080403 (2015). [42] J. Shang, H. K. Ng, and B.-G. Englert, Quantum state tomography: Mean squared error matters, bias does not, arXiv:1405.5350. [43] G. Zauner, Quantum designs: Foundations of a noncommutative design theory, Int. J. Quantum Inf. 9, 445 (2011). [44] P. Butterley and W. Hall, Numerical evidence for the maximum number of mutually unbiased bases in dimension six, Phys. Lett. A369, 5 (2007). [45] I. Bengtsson, W. Bruzda, Å . Ericsson, J.- Å . Larsson, W. Tadej, and K. Życzkowski, Mutually unbiased bases and Hadamard matrices of order six, J. Math. Phys. 48, 052106 (2007). [46] S. Brierley and S. Weigert, Maximal sets of mutually unbiased quantum states in dimension 6, Phys. Rev. A 78, 042312 (2008). [47] S. Brierley and S. Weigert, Constructing mutually unbiased bases in dimension six, Phys. Rev. A 79, 052316 (2009). [48] P. Jaming, M. Matolcsi, P. Móra, F. Szöllősi, and M. Weiner, A generalized Pauli problem and an infinite family of MUBtriplets in dimension 6, J. Phys. A: Math. Theor. 42, 245305 (2009). [49] P. Mandayam, S. Bandyopadhyay, M. Grassl, and W. K. Wootters, Unextendible mutually unbiased bases from Pauli classes, Quantum Inf. Comput. 14, 0823 (2014). [50] P. Raynal, X. Lü, and B.-G. Englert, Mutually unbiased bases in six dimensions: The four most distant bases, Phys. Rev. A 83, 062303 (2011). [51] E. T. Jaynes, Information theory and statistical mechanics, Phys. Rev. 106, 620 (1957). [52] E. T. Jaynes, Information theory and statistical mechanics II, Phys. Rev. 108, 171 (1957). [53] V. Bužek, Quantum tomography from incomplete data via MaxEnt principle, in Quantum State Estimation, Lecture Notes in Physics Vol. 649, edited by M. G. A. Paris and J. Řeháček (Springer, Berlin, 2004), pp. 189–234. [54] J. R. Shewchuk, An Introduction to the Conjugate Gradient Method Without the Agonizing Pain, Technical Report No. 865018, Carnegie Mellon University, 1994. [55] J. A. Nelder and R. Mead, A simplex method for function minimization, Comput. J. 7, 308 (1965). [56] P. J. M. van Laarhoven and E. H. L. Aarts, Simulated Annealing: Theory and Applications, Mathematics and Its Applications (Springer, Berlin, 1985). [57] S. Dürr, Quantitative wave-particle duality in multibeam interferometers, Phys. Rev. A 64, 042113 (2001). [58] B. G. Englert, D. Kaszlikowski, L. C. Kwek, and W. H. Chee, Wave-particle duality in multi-path interferometers: General concepts and three-path interferometers, Int. J. Quantum Inf. 6, 129 (2008). [59] R. Blume-Kohout, Hedged Maximum Likelihood Quantum State Estimation, Phys. Rev. Lett. 105, 200504 (2010). [60] R. Blume-Kohout, Optimal, reliable estimation of quantum states, New J. Phys. 12, 043034 (2010). [61] A. D. Wilson and T. D. Murphey, Local E-optimality conditions for trajectory design to estimate parameters in nonlinear systems, Proc. Am. Control Conf. 6/2014 (2014), p. 443. [62] A. S. Hedayat, Study of optimality criteria in design of experiments, in Statistics and Related Topics, edited by M. Csörgö, D. A. Dawson, J. N. K. Rao, and A. K. Md. E. Saleh (North-Holland, Amsterdam, 1981), pp. 39–56.
Collections