Multivariate analysis of photonic crystal microcavities with fabrication defects



Downloads per month over past year

Rico García, José María and López Alonso, José Manuel and Alda Serrano, Javier (2005) Multivariate analysis of photonic crystal microcavities with fabrication defects. In Photonic Materials, Devices, and Applications, Pts 1 and 2. Proceedings of SPIE (5840). SPIE, Bellingham, pp. 562-571. ISBN 0-8194-5835-X

[thumbnail of 2005-multivariate analysis-SPIE.pdf] PDF
Restringido a Repository staff only


Official URL:


Photonic crystal microcavities are defined by the spatial arrangement of materials. In the analysis of their spatial temporal mode distributions Finite-Difference Time-Domain (FDTD) methods have proved its validity. The output of the FDTD can be seen as the realizations of a multidimensional statistic variable. At the same time, fabrication tolerances induce an added and unavoidable variability in the performance of the microcavity. In this contribution we have analyzed the modes of a defective photonic crystal microcavity. The location, size, and shape of the cylinders configuring the microcavity are modelled as having a normal distribution of their parametric descriptors. A principal component analysis is applied to the output of the FDTD for a population of defective microcavities. The relative importance of the defects is evaluated, along with the changes induced in the spatial temporal distribution of electromagnetic field obtained from the calculation.

Item Type:Book Section
Additional Information:

ISSN: 0277-786x
Conference on Photonic Materials, Devices and Applications. Seville, Spain, may 09-11, 2005.
Copyright 2005 Society of Photo Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.

Uncontrolled Keywords:Crystallography ; Optics ; Nanotechnology ; Photonic Crystals ; Microcavities
Subjects:Sciences > Physics > Materials
Sciences > Physics > Optics
Medical sciences > Optics > Physical optics
ID Code:35236
Deposited On:01 Feb 2016 15:37
Last Modified:01 Aug 2017 12:29

Origin of downloads

Repository Staff Only: item control page