Publication:
High quality factor indium oxide mechanical microresonators

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2015-11-09
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Amer Inst Physics
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The mechanical resonance behavior of as-grown In_2O_3 microrods has been studied in this work by in-situ scanning electron microscopy (SEM) electrically induced mechanical oscillations. Indium oxide microrods grown by a vapor–solid method are naturally clamped to an aluminum oxide ceramic substrate, showing a high quality factor due to reduced energy losses during mechanical vibrations. Quality factors of more than (10)^5 and minimum detectable forces of the order of (10)^(16) N/Hz^(1/2) demonstrate their potential as mechanical microresonators for real applications. Measurements at low- vacuum using the SEM environmental operation mode were performed to study the effect of extrinsic damping on the resonators behavior. The damping coefficient has been determined as a function of pressure.
Description
©2015 AIP Publishing LLC. This work has been supported by MINECO (Project Nos. MAT 2012-31959 and CSD 2009-00013). J.B. acknowledges the financial support from Universidad Complutense de Madrid.
Keywords
Citation
1 K. Eom, H. S. Park, D. S. Yoon, and T. Kwon, Phys. Rep. 503, 115 (2011). 2 B. Ilic, D. Czaplewski, H. G. Craighead, P. Neuzil, C. Campagnolo, and C. Batt, Appl. Phys. Lett. 77, 450 (2000). 3 M. Li, H. X. Tang, and M. L. Roukes, Nat. Nanotechnol. 2, 114 (2007). 4 J. Moser, J. G€uttinger, A. Eichler, M. J. Esplandiu, D. E. Liu, M. I. Dykman, and A. Bachtold, Nat. Nanotechnol. 8, 493 (2013). 5 K. Jensen, K. Kim, and A. Zettl, Nat. Nanotechnol. 3, 533 (2008). 6 J.-W. Han, J.-H. Ahn, M.-W. Kim, J. O. Lee, J.-B. Yoon, and Y.-K. Choi, Small 6, 1197 (2010). 7 K. Jensen, J. Weldon, H. Garcia, and A. Zettl, Nano Lett. 7, 3508 (2007). 8 M. Marzencki, J. Microelectromech. Syst. 18, 1444 (2009). 9 T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, Phys. Rev. Lett. 95, 033901 (2005). 10H. Rokhsari, T. Kippenberg, T. Carmon, and K. Vahala, IEEE J. Sel. Top. Quantum Electron. 12, 96 (2006). 11G. Anetsberger, R. Rivie`re, A. Schliesser, O. Arcizet, and T. J. Kippenberg, Nat. Photonics 2, 627 (2008). 12K.-K. Ni, R. Norte, D. J. Wilson, J. D. Hood, D. E. Chang, O. Painter, and H. J. Kimble, Phys. Rev. Lett. 108, 214302 (2012). 13H. Najar, M.-L. Chan, H.-A. Yang, L. Lin, D. G. Cahill, and D. A. Horsley, Appl. Phys. Lett. 104, 151903 (2014). 14Y. Tao, J. M. Boss, B. A. Moores, and C. L. Degen, Nat. Commun. 5, 3638 (2014). 15M. J. Burek, D. Ramos, P. Patel, I. W. Frank, and M. Lonar, Appl. Phys. Lett. 103, 131904 (2013). 16K. Y. Yasumura, T. D. Stowe, E. M. Chow, T. Pfafman, T. W. Kenny, B. C. Stipe, and D. Rugar, J. Microelectromech. Syst. 9, 117 (2000). 17T. Ono and M. Esashi, Meas. Sci. Technol. 15, 1977 (2004). 18S. Schmid and C. Hierold, J. Appl. Phys. 104, 093516 (2008). 19J. Bartolome, A. Cremades, and J. Piqueras, J. Mater. Chem. C 1, 6790 (2013). 20C. Li, D. Zhang, S. Han, X. Liu, T. Tang, and C. Zhou, Adv. Mater. 15, 143 (2003). 21C.-J. Chen, M.-Y. Chern, C.-T. Wu, and C.-H. Chen, Mater. Res. Bull. 45, 230 (2010). 22Z. W. Pan, Z. R. Dai, and Z. L. Wang, Science 291, 1947 (2001). 23J. Jeong, J. Lee, C. Lee, S. An, and G.-C. Yi, Chem. Phys. Lett. 384, 246 (2004). 24B.-K. Lee, Y.-H. Song, and J.-B. Yoon, in Proceedings of IEEE 22nd International Conference on Indium Tin Oxide (ITO) Transparent MEMS Switches: Micro Electro Mechanical Systems, Sorrento, Italy, 25–29 January 2009, pp. 148–151. 25I. Hamberg and C. G. Granqvist, J. Appl. Phys. 60, R123 (1986). 26K. H. L. Zhang, A. Regoutz, R. G. Palgrave, D. J. Payne, R. G. Egdell, A. Walsh, S. P. Collins, D. Wermeille, and R. A. Cowley, Phys. Rev. B. 84, 233301 (2011). 27A. Walsh, C. Richard, A. Catlow, A. A. Alexey, A. Sokol, and S. M. Woodley, Chem. Mater. 21, 4962 (2009). 28D. Liu, W. W. Lei, B. Zou, S. D. Yu, J. Hao, K. Wang, B. B. Liu, Q. L. Cui, and G. T. Zou, J. Appl. Phys. 104, 083506 (2008). 29F. Fuchs and F. Bechstedt, Phys. Rev. B. 77, 155107 (2008). 30J. Bartolome, P. Hidalgo, D. Maestre, A. Cremades, and J. Piqueras, Appl. Phys. Lett. 104, 161909 (2014). 31X. D. Bai, P. X. Gao, Z. L. Wang, and E. G. Wang, Appl. Phys. Lett. 82, 4806 (2003). 32C. Q. Chen, Y. Shi, Y. S. Zhang, J. Zhu, and Y. J. Yan, Phys. Rev. Lett. 96, 075505 (2006). 33S. Perisanu, V. Gouttenoire, P. Vincent, A. Ayari, M. Choueib, M. Bechelany, D. Cornu, and S. T. Purcell, Phys. Rev. B 77, 165434 (2008). 34Y. Hao, G. Meng, C. Ye, and L. Zhang, Cryst. Growth Des. 5, 1617 (2005). 35J. Y. Lao, J. G. Wen, and Z. F. Ren, Nano Lett. 2, 1287 (2002). 36K. L. Ekinci and M. L. Roukes, Rev. Sci. Instrum. 76, 061101 (2005). 37P. Ovartchaiyapong, L. M. A. Pascal, B. A. Myers, P. Lauria, and A. C. Bleszynski Jayich, Appl. Phys. Lett. 101, 163505 (2012). 38F. R. Blom, S. Bouwstra, M. Elwenspoek, and J. H. J. Fluitman, J. Vac. Sci. Technol. B 10, 19 (1992). 39R. Vogelgesang, A. K. Ramdas, S. Rodriguez, M. Grimsditch, and T. Anthony, Phys. Rev. B 54, 3989 (1996). 40Z. Li and R. C. Brandt, Int. J. High Technol. Ceram. 4, 1 (1988). 41A. Khan, J. Philip, and P. Hess, J. Appl. Phys. 95, 1667 (2004). 42S. Guillon, D. Saya, L. Mazenq, S. Perisanu, P. Vincent, A. Lazarus, O. Thomas, and L. Nicu, Nanotechnology 22, 245501 (2011). 43D. M. Photiadis and J. A. Judge, Appl. Phys. Lett. 85, 482 (2004).
Collections