Publication:
Spark plasma versus conventional sintering in the electrical properties of Nasicon-type materials

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2015-12-05
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Science SA
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Li_(1+x)M_(x)Ti_(2−x)(PO_(4))_(3) powders with x = 0 and 0.3 and M = Al, Cr and Fe have been sintered by conventional sintering (CS) and Spark Plasma Sintering (SPS), and the electrical properties have been compared. The use of SPS allows preparing samples with higher density at lower temperature and shorter time than the CS, avoiding segregation of secondary phases and with reduced crystallite size. The introduction of aluminum, chromium and iron in the LiTi_(2)(PO_(4))_(3) (LTP) clearly enhances ionic conductivity even if the samples have similar densities. Despite the different level of density reached with CS and SPS, the activation energies of dc and grain boundary contributions are very similar and the differences in ionic conductivity are determined by pre-exponential factors. The samples produced by SPS showed a well-defined grain boundary meaning a more homogenous electrical contact.
Description
© 2016 Elsevier B.V. This research has been financed by the “Ministerio de Ciencia e Innovación” (MICINN, Spain) and by the “Fundación Neurociencias y Envejecimiento” (Spain) through grants MAT2010-18432 and 4153592, 4143942 respectively as well as by the MAT2013-40722-R project.
Unesco subjects
Keywords
Citation
[1] K. Nagata, T. Nanno, J. Power Sources, 174, 2007, 832–837. [2] X. Xu, Z. Wen, X. Yang, J. Zhang, Z. Gu, Sol. State Ion., 177, 2006, 2611–2615. [3] J.S. Thokchom, B. Kumar, Sol. State Ion., 177, 2006, 727–732. [4] A. Rivera, C. León, J. Santamaría, A. Varez, M.A. París, J. Sanz, J. Non Cryst. Solids, 307, 2002, 1024–1030. [5] A. Rivera, J. Santamaría, C. León, T. Blochowicz, C. Gainaru, E.A. Rossler, App. Phys. Lett., 82, 2003, 2425–2427. [6] J. Santos-Peña, M. Cruz-Yusta, P. Soudan, S. Franger, J.J. Cuart-Pascual, Sol. State Ion., 177, 2006, 2667–2672. [7] M. Barré, M.P. Crosnier-López, F. LeBerre, E. Suard, J.L. Fourquet, J. Sol. State Chem., 188, 2007, 1011–1019. [8] P. Gibot, M. Casas-Cabanas, L. Laffont, S. Levasseur, P. Carlach, S. Hamelet, J.M. Tarascón, C. Masquelier, Nat. Mater., 7, 2008, 741–747. [9] P. Knauth, Sol. State Ion., 180, 2009, 911–916. [10] N. Anantharamulu, K. Koteswara Rao, G. Rambabu, B. Vijaya Kumar, V. Radha, M. Vithal, J. Mat. Sci., 46, 2011, 2821–2837. [11] B. Wang, M. Greenblatt, S. Wang, S.J. Hwu, Chem. Mater., 5, 1993, 23–26. [12] K. Arbi, M.A. Paris, J. Sanz, J. Phys. Chem. B, 110, 2006, 6454–6457. [13] J. Fu, Solid State Ion., 2738, 1997, 195–200. [14] R. Ramaraghavulu, S. Buddhudu, Ceram. Int., 37, 2011, 3651–3656. [15] K. Arbi, S. Mandal, J.M. Rojo, J. Sanz, Chem. Mater., 20, 2002, 1091–1097. [16] M.A. Paris, A. Martínez-Juárez, J.M. Rojo, J. Sanz, J. Phys. Condens. Matter, 8, 1996, 5355–5366. [17] Y. Shimonishi, T. Zhang, N. Imanishi, D. Im, D.J. Lee, A. Hirano, Y. Takeda, O. Yamamoto, N. Sammes, J. Power Sources, 196, 2013, 5128–5132. [18] P. Senguttuvan, G. Rousse, M.E. Arroyo y de Dompablo, H. Vezin, J.M. Tarascón, M.R. Palacín, J. Am. Chem. Soc., 135, 2013, 3897–3903. [19] P. Hartmann, T. Leichtweiss, M.R. Busche, M. Schneider, M. Reich, J. Sann, P. Adelhelm, J. Janek, J. Phys. Chem. C, 177, 2013, 21064–21074. [20] H. Morimoto, H. Awano, J. Terashima, Y. Shindo, S. Nakanishi, N. Ito, K. Ishikawa, S. Tobishima, J. Power Sources, 240, 2013, 636–643. [21] M. Sughama, U.V. Varadaraju, Solid State Ion., 95, 1997, 201–205. [22] S.D. Jackman, R.A. Culter, J. Power Sources, 230, 2013, 251–260. [23] M. Pérez-Estébanez, J. Isasi-Marín, D.M. Többens, A. Rivera-Calzada, C. León, Solid State Ion., 266, 2014, 1–8. [24] H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka, G. Adachi, Chem. Lett. 19, 1990, 1825–1828. [25] S. Wong, P.J. Newman, A.S. Best, K.N. Nairn, D.R. MacFarlane, M. Forsyth, J. Mater. Chem., 8, 1998, 2199–2203. [26] J. Wolfenstine, D. Foster, J. Read, J.L. Allen, J. Power Sources, 182, 2008, 626–629. [27] J. Wolfenstine, J.L. Allen, J. Summer, J. Sakamoto, Solid State Ion., 180, 2009, 961–967. [28] Z.A. Munir, U. Anselmi-Tamburini, M. Ohyanagi, J. Mater. Sci., 41, 2006, 763–777. [29] W.D. Kingerg, H.K. Bowen, Introduction to Ceramics, (Chapter 10)1976, Wiley-Interscience publications; New York. [30] M. Nygren, J. Iron Steel Res., 14, 2007, 99–103. [31] G. Delaizir, V. Viallet, A. Aboulaich, R. Bouchet, L. Tortet, V. Seznec, M. Morcrette, J.M. Tarascon, P. Rozier, M. Dollé, Adv. Funct. Mat., 22, 2012, 2140–2147. [32] T. Takeuchi, H. Kageyama, K. Nakanishi, M. Tabuvhi, H. Sakaebe, T. Ohta, H. Senoh, T. Sakai, K. Tatsumi, J. Electrochem. Soc., 157, 2010, A1196–A1201. [33] Y. Kobayashi, H. Miyashiro, T. Takeuchi, H. Shigemura, N. Balakrishnan, M. Tabuchi, H. Kageyama, T. Iwahori, Solid State Ion., 152–53, 2002, 137–142. [34] R. Kali, A. Mukhopadhyay, J. Power Sources, 247, 2014, 920–931. [35] R. Kali, A. Mukhopadhyay, J. Power Sources, 247, 2014, 920–931. [36] Y. Kobayashi, T. Takeuchi, M. Tabuchi, K. Ado, H. Kageyama, J. Power Sources, 81–82, 1999, 853–858. [37] C.M. Chang, Y.I. Lee, S.H. Hong, H.M. Park, J. Am. Ceram. Soc., 88, 2005, 1803–1807. [38] Z. Wen, X. Xu, J. Li, J. Electroceram., 22, 2009, 342–345. [39] X. Xu, Z. Wen, X. Yang, L. Chen, Mat. Res. Bull., 43, 2008, 2334–2341. [40] S. Duluard, A. Paillassa, L. Puech, P. Vinatier, V. Turq, P. Rozier, P. Lenormand, P. Taberna, P. Simon, F. Ansarta, J. Eur. Ceram. Soc., 33, 2013, 1145–1153. [41] J.S. Lee, C.M. Chang, Y.I. Lee, J.H. Lee, S.H. Hong, J. Am. Ceram. Soc., 87, 2004, 305–307. [42] C. Chang, S. Hong, H. Park, Solid State Ion., 176, 2005, 2583–2587. [43] M. Pérez-Estébanez, J. Isasi-Marín, C. Díaz-Guerra, A. Rivera-Calzada, C. León, J. Santamaría, Solid State Ion., 241, 2013, 36–45. [44] M. Nygren, Z. Shen, Ceramic Science and Technology, Hot Pressing and Spark Plasma Sintering vol. 3, 2012, Willey-VHC; Germany, 189–214. [45] J. Rodríguez-Carvajal, “FULLPROF: A Program for Rietveld Refinement and Pattern Matching Analysis”, Abstracts of the Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr, 1990, 127, Toulouse, France. [46] F. Lange, J. Am. Ceram. Soc., 72, 1989, 3–15. [47] H. Aono, Studies on Li+ Ionic Conducting Solid Electrolyte Composed of Nasicon-type Structure, PhD thesis1994. [48] P. Scherrer, Mathematisch-Physikalische Kl., 2, 1918, 98–100. [49] M. Suárez, J.L. Menéndez, R. Torrecillas, Scr. Mater., 61, 2009, 931–934. [50] K. Arbi, R. Jiménez, T. Šalkus, A.F. Orliukas, J. Sanz, Solid State Ion., 271, 2014, 28–33. [51] K. Arbi, W. Bucheli, R. Jiménez, J. Sanz, J. Eur. Ceram. Soc., 32, 2015, 1477–1484. [52] P. Zhang, M. Matsui, Y. Takeda, O. Yamamoto, N. Imanishi, Solid State Ion., 263, 2014, 27–32. [53] P. Zhang, H. Wang, Q. Si, M. Matsui, Y. Takeda, O. Yamamoto, N. Imanishi, Solid State Ion., 272, 2015, 101–106. [54] X. Xu, Z. Wen, J. Wu, X. Yang, Solid State Ion., 178, 2007, 29–34. [55] C. Guizard, S. Surbé, G. Baldinozzi, A. Addad, Acta Mater., 56, 2008, 4658–4672.
Collections