Publication:
Analysis of observations backing up the existence of VLF and ionospheric TEC anomalies before the Mw6.1 earthquake in Greece, January 26, 2014

Research Projects
Organizational Units
Journal Issue
Abstract
The present work integrates ground-based ionosphere measurements using very-low-frequency radio transmissions with satellite measurements of the total electron content to draw common conclusions about the possible impact that the Mw6.1 earthquake that took place in Greece on January 26, 2014, had on the ionosphere. Very-low-frequency radio signals reveal the existence of an ~4-day anomaly in the wavelet spectra of the signals received inside the earthquake preparation zone and a significant increase in the normalized variance of the signals prior to the earthquake (approximately 1 day before). Through total electron content analysis, it was possible to identify a clear anomaly from 15:00 until 20:00 UT on the day before the earthquake that appears again on the day of the earthquake between 07:00 UT and 08:00 UT. The anomalous values reach TEC*Sigma ~4.36 and 3.11, respectively. Their spatial and temporal distributions give grounds to assume a possible link with the earthquake preparation. The geomagnetic, solar and weather conditions during the considered period are presented and taken into account. This work is an initial and original step towards a multi-parameter approach to the problem of the possible earthquake-related effects on the ionosphere joining observations made from both ground stations and satellites. A well-founded knowledge of these phenomena is clearly necessary before dealing with their application to earthquake prediction purposes.
Description
© 2015 Elsevier Ldt. The Portuguese team acknowledges the support of the Portuguese Science and Technology Foundation (FCT) through the project Pest/OE/CTE/UI0078/2014 and the FCT/FEDER-COMPETE project EAC (PTDC/GEO-FIQ/4178/2012) FCOMP-01-0124-FEDER-029197. We are grateful to Samuel Bárias for the maintenance of the Portuguese radio antennas, to Elisa Cardoso for her help with wavelet theory, to Tommaso Maggipinto for instructing us on the MatLab® wavelet script and to Rui Salgado for the interpretation of the weather data. H.G.S is grateful to FCT for the postdoctoral fellowship SFRH/BPD/63880/2009 and to Calouste Gulbenkian Foundation (Portugal) for the award Estímulo à Criatividade e à Qualidade na Actividade de Investigação (2010). The Spanish team acknowledges the support of the Spanish Ministry of Economy and Competitiveness through the project CGL2014-62113-EXP. This work is part of the research activity of the Spanish Team “Grupo de Estudios Ionosféricos y Técnicas de Posicionamiento Satelital (GNSS)” financed by the Universidad Complutense de Madrid. The authors are very grateful to Luigi Ciraolo for his collaboration. They also want to thank the International GNSS Service, IGS, and EUREF Permanent Network (EPN) for providing the GNSS data; the World Data Center for Geomagnetism Kyoto for the Dst and Kp index values; and Intermagnet for the magnetic field data. AVVSO, the Russian Weather website and OMNIWeb Data Explorer from NASA, also provided very valuable data. Figures were drawn using the Generic Mapping Tools (Wessel and Smith, 1998). The final version of the article was prepared when M.H. was on sabbatical leave at the Abdus Salam International Centre for Theoretical Physics (Trieste, Italy) granted by the Spanish Ministry of Education, Culture and Sports. The authors are grateful to Dr. Kazimirowsky and two anonymous reviewers for their comments and suggestions, which improved the quality of the present manuscript.
UCM subjects
Unesco subjects
Keywords
Citation
1. Afraimovic, E.L., Voeikov, S.V., Ishin, A.B., Perevalova, N.P., Ruzhin, Y..Ya., 2008. Variations in the Total Electron Content during the powerful Typhoon of August 5–112006, near the Southeastern Coast of China. Geomag Aeron. 48 (5), 674–679. 2. Artru, J., Ducic, J.V., Kanamori, H., Lognonné, Ph., Murakami, M., 2005. Ionospheric detection of gravity waves induced by tsunamis. Geophys. J. Int. 160, 840–848. http://dx.doi.org/10.1111/j.1365-246X.2005.02552.x. 3. Bauer, S.J., 1958. An apparent ionosphere response to the passage of hurricanes. J. Geophys. Res. 63, 265–269. 4. Biagi, P.F., Castellana, L., Maggipinto, T., Piccolo, R., Minafra, A., Ermini, A., Martellucci, S., Bellecci, C., Perna, G., Capozzi, V., Molchanov, O.A., Hayakawa, M., 2006. LF radio anomalies revealed in Italy by the wavelet analysis: Possible preseismic effects during 1997–1998. Phys. Chem. Earth 31, 403–408. http://dx. doi.org/10.1016/j.pce.2005.10.001. 5. Biagi, P.F., Maggipinto, T., Righetti, F., Loiacono, D., Schiavulli, L., Ligonzo, T., Ermini, A., Moldovan, I.A., Moldovan, A.S., Buyuksarac, A., Silva, H.G., Bezzeghoud, M., Contadakis, M.E., 2011. The European VLF/LF radio network to search for earthquake precursors: setting up and natural/man-made disturbances. Nat. Hazards Earth Syst. Sci. 11, 333–341. http://dx.doi.org/10.5194/nhess-11-333- 2011. 6. Biagi, P.F., Castellana, L., Maggipinto, T., Loiacono, D., Augelli, V., Schiavulli, L., Ermini, A., Capozzi, V., Solovieva, M.S., Rozhnoi, A.A., Molchanov, O.A., Hayakawa, M., 2008. Disturbances in a VLF radio signal prior the M=4.7 offshore Anzio (central Italy) earthquake on 22 August 2005. Nat. Hazards Earth Syst. Sci. 8, 1041–1048. 7. Bishop, R.L., Aponte, N., Earle, G.D., Sulzer, M., Larsen, M.F., Peng, G.S., 2006. J. Geophys. Res. http://dx.doi.org/10.1029/2006JAO11668. Chen, T.F., Shen, J., 2005. Image Processing and Analysis Variational, PDE, Wavelet and Stochastic Methods. Society of Applied Mathematics, ISBN 0-89871-598-X. Ciraolo, L., Azpilicueta, F., Brunini, C., Meza, A., Radicella, S.M., 2007. Calibration errors on experimental slant total electron content (TEC) determined with GPS. J. Geodesy 81 (2), 111–120. 8. Davidenko, D., Pulinets, S.A., 2012. Analysis of the ionosphere behavior before strong Greek earthquakes with M>6.0 over a period of 2006–2011. In: Proceedings Pre-Earthquakes Seventh Frame Work Programma Final Meeting, Yuzhno-Sakhalinsk, Russia. 9. Davies, K., Baker, D.M., 1965. Ionospheric effects observed around the time of the Alaskan earthquake of March 28, 1964. J. Geophys. Res. 70, 2251–2253. http:// dx.doi.org/10.1029/JZ070i009. 10. Dobrovolsky, I.R., Zubkov, S.I., Myachkin, V.I., 1979. Estimation of the size of earthquake preparation zones. Pure Appl. Geophys. 117, 1025–1044. Freund, F., 2013. Earthquake Forewarning – a multidisciplinary challenge from the ground up to space. Acta Geophys. 61, 775–807. http://dx.doi.org/10.2478/ s11600-013-0130-4. 11. Gokhberg, M.B., Gufeld, I.L., Rozhnoi, A.A., Marenko, V.F., Yampolsky, V.S., Ponomarev, E.A., 1989. Study of seismic influence on the ionosphere by super long wave probing of the Earth-ionosphere waveguide. Phys. Earth. Planet. Inter. 57, 64–67. 12. González, W.D., Joselyn, J.A., Kamide, Y., Kroehl, H.W., Rostoker, G., Tsurutani, B.T., Vasyliunas, V.M., 1994. What is a geomagnetic storm? J. Geophys. Res. 99, 5771–5792. http://dx.doi.org/10.1029/93JA02867. 13. Harrison, R.G., Aplin, K.L., Rycroft, M.J., 2014. Earthquake–cloud coupling through the global atmospheric electric circuit. Nat. Hazards Earth Syst. Sci. 14, 773– 777. 14. Kakinami, Y., Kamogawa, M., Onishi, T., Mochizuki, K., Lebreton, J.P., Watanabe, S., Yamamoto, M.Y., Mogi, T., 2013. Validation of electron density and temperature observed by DEMETER. Adv. Space Res. 52, 1267–1273. http://dx.doi.org/ 10.1016/j.asr.2013.07.003. 15. Kazimirovsky, E., 2002. Coupling from below as a source of ionospheric variability: a review. Ann. Geophys. http://dx.doi.org/10.4401/ag-3482. Kazimirovsky, E., Herraiz, M., De la Morena, B.A., 2003. Effects on the ionosphere due to phenomena occurring below it. Survey Geophys. 24, 139–184. 16. Lastovicka, J., 2006. Forcing of the ionosphere by waves from below. J. Atmos. Solar- Terrrestrial Phys. 68, 479–497. 17. Liu, J.Y., Sun, Y.Y., Tsai, H.F., Lin, C.H., 2012. Seismo-traveling ionospheric disturbances triggered by the 12 May 2008 M 8.0 Wenchuan Earthquake. Terr. Atmos. Ocean. Sci. 23, 9–15. http://dx.doi.org/10.3319/TAO.2011.08.03.01 (T). 18. Lopes, I., Silva, H.G., 2015. Looking for granulation and periodicities imprints in the sunspot time series. Astrophys. J. 804, 120–130. http://dx.doi.org/10.1088/ 0004-637X/804/2/120. 19. Mannucci, A.J., Wilson, B.D., Yuan, D.N., Ho, C.H., Lindqwister, U.J., Runge, T.F., 1998. A global mapping technique for GPS-derived ionospheric total electron content measurments. Radio Sci. 33, 565–582. 20. Mezentsev, A., Füllekrug, M., 2013. Mapping the radio sky with an interferometric network of low-frequency radio receivers. J. Geophys. Res. 118, 8390–8398. http://dx.doi.org/10.1002/jgrd.50671. 21. Meyers, S.D., Kelley, B.G., O´ Brian, J.J., 1993. An introduction to wavelet analysis in oceanography and meteorology: with application to the dispersion of Yanai waves. Mon. Weather Rev. 121, 2858–2866. 22. Molchanov, O., Fedorov, E., Schekotov, A., Gordeev, E., Chebrov, V., Surkov, V., Rozhnoi, A., Andreevsky, S., Iudin, D., Yunga, S., Lutikov, A., Hayakawa, M., Biagi, P.F., 2004. Lithosphere-atmosphere-ionosphere coupling as governing mechanism for preseismic short-term events in atmosphere and ionosphere. Nat. Haz. Earth Syst. Sci. 4, 757–767. 23. Moore, G., 1964. Magnetic Disturbances preceding the 1964 Alaska earthquake. Nature 203, 508–509. http://dx.doi.org/10.1038/203508b0. 24. Nemec, F., Santolík, O., Parrot, M., Berthelier, J.J., 2008. Spacecraft observations of electromagnetic perturbations connected with seismic activity. Geophys. Res. Lett. 35, L05109. http://dx.doi.org/10.1029/2007GL032517. 25. Ouzounov, D., Pulinets, S., Romanov, A., Romanov, A., Tsybulya, K., Davidenko, D., Kafatos, M., Taylor, P., 2011. Atmosphere-ionosphere response to the M9 Tohoku earthquake revealed by multi-instrument space-borne and ground observations: preliminary results. Earthq. Sci. 24, 557–564. http://dx.doi.org/ 10.1007/s11589-011-0817-z. 26. Perevalova, N.P., Ishin, A.B., 2011. Effects of tropical cyclones in the ionosphere from data of sounding by GPS signals. Izv. Atmos. Oceanic Phys. 47 (9), 1072–1083. http://dx.doi.org/10.1134/S000143381109012X. 27. Polyakova, A.S., Perevalova, N.P., 2013. Comparative analysis of TEC distrubances over tropical cyclone zones in the North-West Pacific Ocean. Adv. Space Res. 52, 1416–1426. http://dx.doi.org/10.1016/j.asr.2013.07.029. 28. Pulinets, S.A., Boyarchuk, K.A., 2004. Ionospheric Precursors of Earthquakes. Springer, Berlin, ISBN 978-3-540-20839-6. 29. Pulinets, S.A., Ouzounov, D., 2011. Lithosphere–Atmosphere–Ionosphere Coupling (LAIC) model – An unified concept for earthquake precursors validation. J. Asian Earth Sci. 41, 371–382. http://dx.doi.org/10.1016/j. jseaes.2010.03.005. 30. Righetti, F., Biagi, P.F., Maggipinto, T., Schiavulli, L., Ligonzo, T., Ermini, A., Moldovan, I.A., Moldovan, A.S., Buyuksarac, A., Silva, H.G., Bezzeghoud, M., Contadakis, M. E., Arabelos, D.N., Xenos, T.D., 2012. Wavelet analysis of the LF radio signals collected by the European VLF/LF network from July 2009 to April 2011. Ann. Geophys. 55 (1), 171–180. http://dx.doi.org/10.4401/ag-5188. 31. Rishbeth, R., 2006. F-region links with the lower atmosphere? J. Atmos. Solar- Terristrial Phys, 68, 469–478. http://dx.doi.org/10.1016/j.jastp.2005.03.017. 32. Rozhnoi, A., Solovieva, M., Levin, B., Hayakawa, M., Fedun, V., 2014. Meteorological effects in the lower ionosphere as based on VLF/LF signal observations. Nat. Hazards Earth Syst. Sci. 14, 2671–2679. http://dx.doi.org/10.5194/nhess-14- 2671-2014. 33. Rozhnoi, A., Solovieva, M., Molchanov, O., Schwingenschuh, K., Boudjada, M., Biagi, P.F., Maggipinto, T., Castellana, L., Ermini, A., Hayakawa, M., 2009. Anomalies in VLF radio signals prior the Abruzzo earthquake (M=6.3) on 6 April 2009. Nat. Hazards Earth Syst. Sci. 9, 1727–1732. http://dx.doi.org/10.5194/nhess-9-1727- 2009. 34. Saha, A., Guha, A., Kumar De, B., Roy, R., Choudhury, A., Banik, T., Dhar, P., Chakraborty, M., 2014. Precursory signature of several major earthquakes studied using 40 kHz low frequency signal. Adv. Space Res. 54, 617–627. 35. Silva, H.G., Conceição, R., Melgão, M., Nicoll, K., Mendes, P.B., Tlemçani, M., Reis, A. H., Harrison, R.G., 2014. Atmospheric electric field measurements in urban environment and the pollutant aerosol weekly dependence. Environ. Res. Lett. 9, 114025. http://dx.doi.org/10.1088/1748-9326/9/11/114025. 36. Silva, H.G., Bezzeghoud, M., Oliveira, M.M., Reis, A.H., Rosa, R.N., 2013. A simple statistical procedure for the analysis of radon anomalies associated with seismic activity. Ann. Geophys. 56, R0106. http://dx.doi.org/10.4401/ pag-5570. 37. Silva, H.G., Bezzeghoud, M., Reis, A.H., Rosa, R.N., Tlemçani, M., Araújo, A.A., Serrano, C., Borges, J.F., Caldeira, B., Biagi, P.F., 2011. Atmospheric electrical field decrease during the M4.1 Sousel earthquake (Portugal). Nat. Haz. Earth Syst. Sci. 11, 987–991. http://dx.doi.org/10.5194/nhess-11-987-2011. 38. Torrence, C., Compo, G.P., 1998. A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc. 79, 61–78, http://paos.colorado.edu/research/wavelets/ (retrieved at 10.07.14). 39. Wessel, P., Smith, W.H.F., 1998. New, improved version of the Generic Mapping Tools released. EOS Trans. AGU 79, 579. 40. Yao, Y.B., Chen, P., Wu, H., Zhang, S., Peng, W.F., 2012. Analysis of ionospheric anomalies before the 2011 Mw 9.0 Japan earthquake. Chin. Sci. Bull. 57, 500–510. http://dx.doi.org/10.1007/s11434-011-4851-y.
Collections