Publication:
Testing QCD with hypothetical tau leptons

Loading...
Thumbnail Image
Full text at PDC
Publication Date
1999-08-01
Authors
Brodsky, S. J
Toumbas, N.
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Amer Physical Soc
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We construct new phenomenological tests of perturbative QCD by considering a hypothetical au lepton of arbitrary mass which decays hadronically through the electromagnetic current. Its adronic branching ratio can be computed directly as an integral over the e⁺e⁻ annihilation cross section ratio, R_ (e⁺e⁻). More generally, we can design a set of commensurate scale relations which test the applicability and self-consistency of leading twist QCD predictions by varying the weight function away from the form associated with the V-A decay of the physical τ . This method allows the wide range of R_(e⁺e⁻) data (or other similar observables which define an effective charge) to be used as renormalization scheme and scale invariant probes of QCD. [S0556-2821(99)05713-6].
Description
©1999 The American Physical Society.
Unesco subjects
Keywords
Citation
[1] E. Braaten, Phys. Rev. Lett. 60, 1606 (1988); Phys. Rev. D 39, 1458 (1989); E. Braaten, S. Narison, and A. Pich, Nucl. Phys. B373, 581 (1992). [2] S. Groote et al., Phys. Rev. Lett. 79, 2763 (1997). [3] F. Le Diberder and A. Pich, Phys. Lett. B 289, 165 (1992); S. Narison and A. Pich, ibid. 304, 359 (1993); S. Narison, ibid. 358, 113 (1995); 361, 121 (1995); M. Girone and M. Neubert, Phys. Rev. Lett. 76, 3061 (1996); S. Groote, J. G. Korner, and A. A. Pivovarov, Phys. Lett. B 407, 66 (1997); M. Davier, Phys. Rev. D 58, 096014 (1998); R. Barate et al., Eur. Phys. J. C 4, 409 (1998); OPAL Collaboration, K. Ackerstaff et al., ibid. 7, 571 (1999). [4] B. Chibishov et al., Int. J. Mod. Phys. A 12, 2075 (1997); V. A. Novikov et al., Nucl. Phys. B237, 525 (1984). [5] S. J. Brodsky et al., Phys. Lett. B 372, 133 (1996). [6] S. J. Brodsky and H. J. Lu, Phys. Rev. D 51, 3652 [1995]. [7] G. Grunberg, Phys. Rev. D 29, 2315 (1984). [8] S. G. Girishny, A. L. Kataev, and S. A. Larin, Phys. Lett. B 259, 144 (1991). [9] E. C. Poggio, H. R. Quinn, and S. Weinberg, Phys. Rev. D 13, 1958 (1976). [10] T. W. Appelquist and H. D. Politzer, Phys. Rev. Lett. 34, 43 (1975); Phys. Rev. D 12, 1404 (1975). [11] J. Schwinger, Particles, Sources and Fields, Vol. II (AddisonWesley, New York, 1973). [12] S. Brodsky et al., Phys. Rev. D 58, 116006 (1998); A. H. Hoang, Z. Ligeti, and A. V. Manohar, ibid. 59, 074017 (1999). [13] A. C. Mattingly and P. M. Stevenson, Phys. Rev. D 49, 437 (1994). [14] A. Quenzer, Phys. Lett. 76B, 512 (1978); J. Burmeister et al., ibid. 76B, 361 (1978); Ch. Berger et al., ibid. 81B, 410 (1979); C. Bacci et al., ibid. 86B, 234 (1979); J. L. Siegrist et al., Phys. Rev. D 26, 969 (1982); B. Niczyporuk et al., Z. Phys. C 15, 299 (1982); L. M. Barkov et al., Nucl. Phys. B256, 365 (1985); Z. Jakubobski et al., Z. Phys. C 40, 49 (1988); D. Bisello et al., Phys. Lett. B 220, 325 (1989); W. Bartel et al., Phys. Lett. 129B, 145 (1983); 160B, 337 (1985); B. Naroska et al., Phys. Rep. 148, 67 (1987); B. Adeva et al., Phys. Rev. D 34, 681 (1986); R. Brandelik et al., Phys. Lett. 113B, 499 (1982); M. Althoff et al., ibid. 138B, 441 (1984); H.-J. Behrend et al., Phys. Lett. B 183, 407 (1987). [15] M. L. Swartz, Phys. Rev. D 53, 5268 (1996). [16] V. A. Novikov et al., Phys. Rep. 41, 1 (1978); M. B. Voloshin, Int. J. Mod. Phys. A 10, 2865 (1995); S. J. Brodsky et al., Phys. Lett. B 359, 355 (1995).
Collections