Publication:
Psychometric functions for detection and discrimination with and without flankers.

Research Projects
Organizational Units
Journal Issue
Abstract
Recent studies have reported that flanking stimuli broaden the psychometric function and lower detection thresholds. In the present study, we measured psychometric functions for detection and discrimination with and without flankers to investigate whether these effects occur throughout the contrast continuum. Our results confirm that lower detection thresholds with flankers are accompanied by broader psychometric functions. Psychometric functions for discrimination reveal that discrimination thresholds with and without flankers are similar across standard levels, and that the broadening of psychometric functions with flankers disappears as standard contrast increases, to the point that psychometric functions at high standard levels are virtually identical with or without flankers. Threshold-versus-contrast (TvC) curves with flankers only differ from TvC curves without flankers in occasional shallower dippers and lower branches on the left of the dipper, but they run virtually superimposed at high standard levels. We discuss differences between our results and other results in the literature, and how they are likely attributed to the differential vulnerability of alternative psychophysical procedures to the effects of presentation order. We show that different models of flanker facilitation can fit the data equally well, which stresses that succeeding at fitting a model does not validate it in any sense.
Description
Keywords
Citation
Adini, Y., & Sagi, D. (2001). Recurrent networks in human visual cortex: Psychophysical evidence. Journal of the Optical Society of America A, 18, 2228–2236. doi:10.1364/JOSAA.18.002228 Adini, Y., Sagi, D., & Tsodyks, M. (1997). Excitatory–inhibitory network in the visual cortex: Psychophysical evidence. Proceedings of the National Academy of Sciences, 94, 10426–10431. doi:10.1073/pnas.94.19.10426 Ahumada, A., & Scharff, L. (2007). Lines and dipoles are efficiently detected [Abstract]. Journal of Vision, 7(9), 337. doi:10.1167/7.9.337. (Handout available at http://vision.arc.nasa.gov/personnel/al/talks/07vss/handout.htm) Alcalá-Quintana, R., & García-Pérez, M. A. (2004). The role of parametric assumptions in adaptive Bayesian estimation. Psychological Methods, 9, 250–271. Alcalá-Quintana, R., & García-Pérez, M. A. (2005). Stopping rules in Bayesian adaptive threshold estimation. Spatial Vision, 18, 347–374. doi:10.1163/1568568054089375 Alcalá-Quintana, R., & García-Pérez, M. A. (2010). A model for the time-order error in contrast discrimination. Quarterly Journal of Experimental Psychology (in press). doi:10.1080/17470218.2010.540018 Alcalá-Quintana, R., Woods, R. L., Giorgi, R. G., & Peli, E. (2010). Lack of lateral interactions in people with central field loss. Manuscript submitted for publication. Bradley, E. L., & Blackwood, L. G. (1989). Comparing paired data: A simultaneous test for means and variances. American Statistician, 43, 234–235. doi:10.2307/2685368 Cass, J. R., & Spehar, B. (2005). Dynamics of collinear contrast facilitation are consistent with long-range horizontal striate transmission. Vision Research, 45, 2728–2739. doi:10.1016/j.visres.2005.03.010 Chen, C.-C., & Tyler, C. W. (2001). Lateral sensitivity modulation explains the flanker effect in contrast discrimination. Proceedings of the Royal Society of London. Series B, 268, 509–516. doi:10.1098/rspb.2000.1387 Chen, C.-C., & Tyler, C. W. (2002). Lateral modulation of contrast discrimination: Flanker orientation effects. Journal of Vision, 2, 520–530. doi:10.1167/2.6.8 Chen, C.-C., & Tyler, C. W. (2008). Excitatory and inhibitory interaction fields of flankers revealed by contrast-masking functions. Journal of Vision, 8, 1–14. doi:10.1167/8.4.10 Faes, F., Nollo, G., Ravelli, F., Ricci, L., Vescovi, M., Turatto, M., et al. (2007). Small-sample characterization of stochastic approximation staircases in forced-choice adaptive threshold estimation. Perception & Psychophysics, 69, 254–262. Fechner, G. T. (1860/1966). Elements of psychophysics. New York: Holt. Foley, J. M. (1994). Human luminance pattern–vision mechanisms: Masking experiments require a new model. Journal of the Optical Society of America A, 11, 1710–1719. doi:10.1364/JOSAA.11.001710 Foley, J. M., & Schwarz, W. (1998). Spatial attention: Effect of position and number of distractor patterns on the threshold-versus-contrast function for contrast discrimination. Journal of the Optical Society of America A, 15, 1036–1047. doi:10.1364/JOSAA.15.001036 García-Pérez, M. A. (1998). Forced-choice staircases with fixed step sizes: Asymptotic and small-sample properties. Vision Research, 38, 1861–1881. doi:10.1016/S0042-6989(97)00340-4 García-Pérez, M. A. (2000). Optimal setups for forced-choice staircases with fixed step sizes. Spatial Vision, 13, 431–448. doi:10.1163/156856800741306 García-Pérez, M. A. (2001). Yes–no staircases with fixed step sizes: Psychometric properties and optimal setup. Optometry and Vision Science, 78, 56–64. García-Pérez, M. A. (2010). Denoising forced-choice detection data. The British Journal of Mathematical and Statistical Psychology, 63, 75–100. doi:10.1348/000711009X424057 García-Pérez, M. A., & Alcalá-Quintana, R. (2005). Sampling plans for fitting the psychometric function. The Spanish Journal of Psychology, 8, 256–289. García-Pérez, M. A., & Alcalá-Quintana, R. (2007a). Bayesian adaptive estimation of arbitrary points on a psychometric function. The British Journal of Mathematical and Statistical Psychology, 60, 147–174. doi:10.1348/000711006X104596 García-Pérez, M. A., & Alcalá-Quintana, R. (2007b). The transducer model for contrast detection and discrimination: Formal relations, implications, and an empirical test. Spatial Vision, 20, 5–43. doi:10.1163/156856807779369724 García-Pérez, M. A., & Alcalá-Quintana, R. (2009). Fixed vs. variable noise in 2AFC contrast discrimination: Lessons from psychometric functions. Spatial Vision, 22, 273–300. doi:10.1163/156856809788746309 García-Pérez, M. A., & Alcalá-Quintana, R. (2010a). Reminder and 2AFC tasks provide similar estimates of the difference limen: A re-analysis of data from Lapid, Ulrich, & Rammsayer (2008) and a discussion of Ulrich & Vorberg (2009). Attention, Perception, & Psychophysics, 72, 1155–1178. doi:10.3758/APP.72.4.1155 García-Pérez, M. A., & Alcalá-Quintana, R. (2010b). The difference model with guessing explains interval bias in two-alternative forced-choice detection procedures. Journal of Sensory Studies, 25, 876–898. doi:10.1111/j.1745-459X.2010.00310.x García-Pérez, M. A., Giorgi, R. G., Woods, R. L., & Peli, E. (2005). Thresholds vary between spatial and temporal forced-choice paradigms: The case of lateral interactions in peripheral vision. Spatial Vision, 18, 99–127. doi:10.1163/1568568052801591 García-Pérez, M. A., & Peli, E. (2001). Luminance artifacts of cathode-ray tube displays for vision research. Spatial Vision, 14, 201–215. doi:10.1163/156856801300202931 Gilchrist, J. M., Jerwood, D., & Ismaiel, H. S. (2005). Comparing and unifying slope estimates across psychometric function models. Perception & Giorgi, R., Soong, G. P., Woods, R. L., & Peli, E. (2004). Facilitation of contrast detection in near-peripheral vision. Vision Research, 44, 3193–3202. doi:10.1016/j.visres.2004.06.024 Huang, P.-C., & Hess, R. F. (2007). Collinear facilitation: Effect of additive and multiplicative external noise. Vision Research, 47, 3108–3119. doi:10.1016/j.visres.2007.08.007 Huang, P.-C., Mullen, K. T., & Hess, R. F. (2007). Collinear facilitation in color vision. Journal of Vision, 7, 1–14. doi:10.1167/7.11.6 Kaernbach, C. (2001). Adaptive threshold estimation with unforced-choice tasks. Perception & Psychophysics, 63, 1377–1388. Katkov, M., Tsodyks, M., & Sagi, D. (2006a). Analysis of a two-alternative forced-choice signal detection theory model. Journal of Mathematical Psychology, 50, 411–420. doi:10.1016/j.jmp.2005.11.002 Katkov, M., Tsodyks, M., & Sagi, D. (2006b). Singularities in the inverse modeling of 2AFC contrast discrimination data. Vision Research, 46, 259–266. doi:10.1016/j.visres.2005.09.022 Kontsevich, L. L., & Tyler, C. W. (1999). Bayesian adaptive estimation of psychometric slope and threshold. Vision Research, 39, 2729–2737. doi:10.1016/S0042-6989(98)00285-5 Meese, T. S., & Baker, D. H. (2009). Cross-orientation masking is speed invariant between ocular pathways but speed dependent between them. Journal of Vision, 9, 1–15. doi:10.1167/9.5.2 Morgan, M. J., & Dresp, B. (1995). Contrast detection facilitation by spatially separated targets and inducers. Vision Research, 35, 1019–1024. doi:10.1016/0042-6989(94)00216-9 Nelson, M. A., & Halberg, R. L. (1979). Visual contrast sensitivity functions obtained with colored and achromatic gratings. Human Factors, 21, 225–228. Numerical Algorithms Group. (1999). NAG Fortran library manual, Mark 19. Oxford: Author. Pelli, D. G. (1985). Uncertainty explains many aspects of visual contrast detection and discrimination. Journal of the Optical Society of America A, 2, 1508–1532. doi:10.1364/JOSAA.2.001508 Petrov, Y., Verghese, P., & McKee, S. P. (2006). Collinear facilitation is largely uncertainty reduction. Journal of Vision, 6, 170–178. doi:10.1167/6.2.8 Polat, U. (1999). Functional architecture of long-range perceptual interactions. Spatial Vision, 12, 143–162. doi:10.1163/156856899X00094 Polat, U. (2009). Effect of spatial frequency on collinear facilitation. Spatial Vision, 22, 179–193. doi:10.1163/156856809787465609. Polat, U., & Sagi, D. (1993). Lateral interactions between spatial channels: Suppression and facilitation revealed by lateral masking experiments. Vision Research, 33, 993–999. doi:10.1016/0042-6989(93)90081-7 Polat, U., & Sagi, D. (1994a). Spatial interactions in human vision: From near to far via experience-dependent cascades of connections. Proceedings of the National Academy of Sciences, 91, 1206–1209. doi:10.1073/pnas.91.4.1206 Polat, U., & Sagi, D. (1994b). The architecture of perceptual spatial interactions. Vision Research, 34, 73–78. doi:10.1016/0042-6989(94)90258-5 Polat, U., & Sagi, D. (2006). Temporal asymmetry of collinear lateral interactions. Vision Research, 46, 953–960. doi:10.1016/j.visres.2005.09.031 Shani, R., & Sagi, D. (2005). Eccentricity effects on lateral interactions. Vision Research, 45, 2009–2024. doi:10.1016/j.visres.2005.01.024 Shani, R., & Sagi, D. (2006). Psychometric curves of lateral facilitation. Spatial Vision, 19, 413–426. doi:10.1163/156856806778457386 Solomon, J. A., & Morgan, M. J. (2000). Facilitation from collinear flanks is cancelled by non-collinear flanks. Vision Research, 40, 279–286. doi:10.1016/S0275-5408(99)00059-9 Solomon, J. A., Watson, A. B., & Morgan, M. J. (1999). Transducer model produces facilitation from opposite-sign flanks. Vision Research, 39, 987–992. doi:10.1016/S0042-6989(98)00143-6 Summers, R. J., & Meese, T. S. (2009). The influence of fixation points on contrast detection and discrimination of patches of grating: Masking and facilitation. Vision Research, 49, 1894–1900. doi:10.1016/j.visres.2009.04.027 Swift, D., Panish, S., & Hippensteel, B. (1997). The use of VisionWorks™ in visual psychophysics research. Spatial Vision, 10, 471–477. doi:10.1163/156856897X00401 Tanaka, Y., & Sagi, D. (1998). Long-lasting, long-range detection facilitation. Vision Research, 38, 2591–2599. Ulrich, R., & Vorberg, D. (2009). Estimating the difference limen in 2AFC tasks: Pitfalls and improved estimators. Attention, Perception, & Psychophysics, 71, 1219–1227. doi:10.3758/APP.71.6.1219 Urban, F. M. (1910). The method of constant stimuli and its generalizations. Psychological Review, 17, 229–259. doi:10.1037/h0074515 Watanabe, A., Mori, T., Nagata, S., & Hiwatashi, K. (1968). Spatial sine-wave responses of the human visual system. Vision Research, 8, 1245–1263. doi:10.1016/0042-6989(68)90031-X Watson, C. S., Kellogg, S. C., Kawanishi, D. T., & Lucas, P. A. (1973). The uncertain response in detection-oriented psychophysics. Journal of Experimental Psychology, 99, 180–185. doi:10.1037/h0034736 Watson, A. B., & Pelli, D. G. (1983). QUEST: A Bayesian adaptive psychometric method. Perception & Psychophysics, 33, 113–120. Williams, C. B., & Hess, R. F. (1998). Relationship between facilitation at threshold and suprathreshold contour integration. Journal of the Optical Society of America A, 15, 2046–2051. doi:10.1364/JOSAA.15.002046 Woods, R. L., Nugent, A. K., & Peli, E. (2002). Lateral interactions: Size does matter. Vision Research, 42, 733–745. doi:10.1016/S0042-6989(01)00313-3 Wu, C.-C., & Chen, C.-C. (2010). Distinguishing lateral interaction from uncertainty reduction in collinear flanker effect on contrast discrimination. Journal of Vision, 10, 1–14. doi:10.1167/10.3.8 Yu, C., Klein, S. A., & Levi, D. M. (2002). Facilitation of contrast detection by cross-oriented surround stimuli and its psychophysical mechanisms. Journal of Vision, 2, 243–255. doi:10.1167/2.3.4 Yu, C., Klein, S. A., & Levi, D. M. (2003). Cross- and iso-oriented surrounds modulate the contrast response function: The effect of surround contrast. Journal of Vision, 3, 527–540. doi:10.1167/3.8.1 Zenger-Landolt, B., & Koch, C. (2001). Flanker effects in peripheral contrast discrimination: Psychophysics and modeling. Vision Research, 41, 3663–3675. doi:10.1016/S0042-6989(01)00175-4. Zulauf, M., Flammer, J., & Signer, C. (1988). Spatial brightness contrast sensitivity measured with white, green, red and blue light. Ophthalmologica, 196, 43–48. doi:10.1159/000309874
Collections