Publication:
Large-scale dynamics associated with clustering of extratropical cyclones affecting Western Europe

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2014-12-27
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Geophysical Union
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Some recent winters in Western Europe have been characterized by the occurrence of multiple extratropical cyclones following a similar path. The occurrence of such cyclone clusters leads to large socio-economic impacts due to damaging winds, storm surges, and floods. Recent studies have statistically characterized the clustering of extratropical cyclones over the North Atlantic and Europe and hypothesized potential physical mechanisms responsible for their formation. Here we analyze 4 months characterized by multiple cyclones over Western Europe (February 1990, January 1993, December 1999, and January 2007). The evolution of the eddy driven jet stream, Rossby wave breaking, and upstream/downstream cyclone development are investigated to infer the role of the large-scale flow and to determine if clustered cyclones are related to each other. Results suggest that optimal conditions for the occurrence of cyclone clusters are provided by a recurrent extension of an intensified eddy driven jet toward Western Europe lasting at least 1 week. Multiple Rossby wave-breaking occurrences on both the poleward and equatorward flanks of the jet contribute to the development of these anomalous large-scale conditions. The analysis of the daily weather charts reveals that upstream cyclone development (secondary cyclogenesis, where new cyclones are generated on the trailing fronts of mature cyclones) is strongly related to cyclone clustering, with multiple cyclones developing on a single jet streak. The present analysis permits a deeper understanding of the physical reasons leading to the occurrence of cyclone families over the North Atlantic, enabling a better estimation of the associated cumulative risk over Europe.
Description
© 2014 American Geophysical Union. We thank the European Centre for Medium-Range Weather Forecasts and the National Centers for Environmental Prediction for the reanalysis data ERA-Interim and NCEP. We also thank the UK Met Office for the weather charts and the Freie Universität Berlin for the storm names. Iñigo Gómara is supported by Spanish national funds (research project MULCLIVAR CGL2012-38923-C02-01). We thank Sven Ulbrich (University of Cologne) and Marc Stringer (University of Reading) for help with data processing. We are grateful to John Methven, Len Shaffrey (both University of Reading), and David Stephenson (University of Exeter) for discussions and Peter Clark (University of Reading) for providing additional synoptic charts. We also thank Olivia Martius and two anonymous reviewers for their helpful and constructive comments. The ERA-Interim Re-analysis data set is available from European Centre for Medium-Range Weather Forecasts (http://apps.ecmwf.int/datasets/). The NCEP reanalysis data set is available from the National Centers for Environmental Prediction (www.ncep.noaa.gov/). The weather charts are available from the UK Met Office (http://www.metoffice.gov.uk), and the storm names from the Freie Universität Berlin (http://www.met.fu-berlin.de/adopt-avortex/). All other data are available from the authors (j.g.pinto@reading.ac.uk)
Unesco subjects
Keywords
Citation
1) Adamson, D. S., S. E. Belcher, B. J. Hoskins, R. S. Plant (2006), Boundary layer friction in mid-latitude cyclones, Q. J. R. Meteorol. Soc., 132, 101–124. 2) Bader, J., M. D. S. Mesquita, K. I. Hodges, N. Keenlyside, S. Østerhus, M. Miles (2011), A review on Northern Hemisphere sea-ice, storminess and the North Atlantic Oscillation: Observations and projected changes, Atmos. Res., 101, 809–834. 3) Benedict, J. J., S. Lee, S. B. Feldstein (2004), Synoptic view of the North Atlantic Oscillation, J. Atmos. Sci., 61, 121–144. 4)Bishop, C. H., A. J. Thorpe (1994a), Frontal wave stability during moist deformation frontogenesis. Part I: Linear wave dynamics, J. Atmos. Sci., 51, 852–873. 5) Bishop, C. H., A. J. Thorpe (1994b), Frontal wave stability during moist deformation frontogenesis. Part II: The suppression of non linear wave development, J. Atmos. Sci., 51, 874–888. 6) Bjerknes, J., H. Solberg (1922), Life cycle of cyclones and the polar front theory of atmospheric circulation, Geofys. Publ., 3, 3–18. 7) Blender, R., C. C. Raible, F. Lunkeit (2014), Non-exponential return time distributions for vorticity extremes explained by fractional Poisson processes, Q. J. R. Meteorol. Soc., doi:10.1002/qj.2354. 8) Chaboureau, J. P., A. J. Thorpe (1999), Frontogenesis and the development of secondary wave cyclones in FASTEX, Q. J. R. Meteorol. Soc., 125, 925–940. 9) Chang, E. K. (1993), Downstream development of baroclinic waves as inferred from regression analysis, J. Atmos. Sci., 50, 2038–2053. 10) Chang, E. K., D. B. Yu (1999), Characteristics of wave packets in the upper troposphere. Part I: Northern Hemisphere winter, J. Atmos. Sci., 56, 1708–1728. 11) Dacre, H. F., S. L. Gray (2006), Life-cycle simulations of low-level frontal waves and the impact of deformation strain, Q. J. R. Meteorol. Soc., 132, 2171–2190. 12) Dacre, H. F., S. L. Gray (2009), The spatial distribution and evolution characteristics of North Atlantic cyclones, Mon. Weather Rev., 137, 99–115. 13) Dacre, H. F., S. L. Gray (2013), Quantifying the climatological relationship between extratropical cyclone intensity and atmospheric precursors, Geophys. Res. Lett., 40, 2322–2327, doi:10.1002/grl.50105. 14) Dee, D., et al., (2011), The ERA-Interim reanalysis: Configuration and performance of the data assimilation system, Q. J. R. Meteorol. Soc., 137, 553–597. 15) Della-Marta, P. M., M. A. Liniger, C. Appenzeller, D. N. Bresch, P. Köllner-Heck, V. Muccione (2010), Improved estimates of the European winter windstorm climate and the risk of reinsurance loss using climate model data, J. Appl. Meteorol. Climatol., 49, 2092–2120. 16) Dritschel, D. G., P. H. Haynes, M. N. Juckes (1991), The stability of a two-dimensional vorticity filament under uniform strain, J. Fluid Mech., 230, 647–665. 17) Feldstein, S. B. (2003), The dynamics of NAO teleconnection pattern growth and decay, Q. J. R. Meteorol. Soc., 129, 901–924. 18) Fink, A. H., T. Brücher, E. Ermert, A. Krüger, J. G. Pinto (2009), The European storm Kyrill in January 2007: Synoptic evolution, meteorological impacts and some considerations with respect to climate change, Nat. Hazards Earth Syst. Sci., 9, 405–423. 19) Franzke, C., S. Lee, S. B. Feldstein (2004), Is the North Atlantic Oscillation a breaking wave?, J. Atmos. Sci., 61, 145–160. 20) Gabriel, A., D. Peters (2008), A diagnostic study of different types of Rossby wave breaking events in the northern extratropics, J. Meteorol. Soc. Jpn., 86, 613–631. 21) Gómara, I., J. G. Pinto, T. Woollings, G. Masato, P. Zurita-Gotor, B. Rodríguez-Fonseca (2014a), Rossby wave-breaking analysis of explosive cyclones in the Euro-Atlantic sector, Q. J. R. Meteorol. Soc., 140, 738–753, doi:10.1002/qj.2190. 22) Gómara, I., B. Rodríguez-Fonseca, P. Zurita-Gotor, J. G. Pinto (2014b), On the relation between explosive cyclones affecting Europe and the North Atlantic Oscillation, Geophys. Res. Lett., 41, 2182–2190, doi:10.1002/2014GL059647. 23) Gyakum, J. R., R. E. Danielson (2000), Analysis of meteorological precursors to ordinary and explosive cyclogenesis in the western North Pacific, Mon. Weather Rev., 128, 851–863. 24) Hanley, J., R. Caballero (2012), The role of large-scale atmospheric flow and Rossby wave breaking in the evolution of extreme windstorms over Europe, Geophys. Res. Lett., 39, L21708, doi:10.1029/2012GL053408. 25) Hawcroft, M. K., L. C. Shaffrey, K. I. Hodges, H. F. Dacre (2012), How much Northern Hemisphere precipitation is associated with extratropical cyclones?, Geophys. Res. Lett., 39, L24809, doi:10.1029/2012GL053866. 26) Haylock, M. R. (2011), European extra-tropical storm damage risk from a multimodel ensemble of dynamically-downscaled global climate models, Nat. Hazards Earth Syst. Sci., 11, 2847–2857. 27) Hewson, T. D. (1997), Objective identification of frontal wave cyclones, Meteorol. Appl., 4, 311–315. 28) Hewson, T. D. (1998), Objective fronts, Meteorol. Appl., 5, 37–65. 29) Hoskins, B. J., M. E. McIntyre, and A. W. Robertson (1985), On the use and significance of isentropic potential vorticity maps, Q. J. R. Meteorol. Soc., 111, 877–946. 30) Joly, A., A. J. Thorpe (1990), Frontal instabilities generated by tropospheric potential vorticity anomalies, Q. J. R. Meteorol. Soc., 116, 525–560. 31) Joly, A., A. J. Thorpe (1991), The stability of time-dependent flows: An application to fronts in developing baroclinic waves, J. Atmos. Sci., 48, 163–182. 32) Kalnay, E., et al., (1996), The NCEP/NCAR 40-Year Reanalysis Project, Bull. Am. Meteorol. Soc., 77, 437–471. 33) Karremann, M. K., J. G. Pinto, P. J. Von Bomhard, M. Klawa (2014), On the clustering of winter storm loss events over Germany, Nat. Hazards Earth Syst. Sci., 14, 2041–2052. 34) Klawa, M., U. Ulbrich (2003), A model for the estimation of storm losses and the identification of severe winter storms in Germany, Nat. Hazards Earth Syst. Sci., 3, 725–732. 35) Lamb, H. H. (1991), Historic Storms of the North Sea, British Isles, and Northwest Europe, Cambridge Univ. Press, Cambridge, U. K. 36) Mahlstein, I., O. Martius, C. Chevalier, D. Ginsbourger (2012), Changes in the odds of extreme events in the Atlantic basin depending on the position of the extratropical jet, Geophys. Res. Lett., 39, L22805, doi:10.1029/2012GL053993. 37) Mailier, P. J., D. B. Stephenson, C. A. T. Ferro, K. I. Hodges (2006), Serial clustering of extratropical cyclones, Mon. Weather Rev., 134, 2224–2240. 38) Masato, G., B. J. Hoskins, T. Woollings (2013a), Wave-breaking characteristics of Northern Hemisphere winter blocking: A two-dimensional approach, J. Clim., 26, 4535–4549. 39) Masato, G., B. J. Hoskins, T. Woollings (2013b), Winter and summer Northern Hemisphere blocking in CMIP5 models, J. Clim., 26, 7044–7059. 40) McCallum, E., W. J. T. Norris (1990), The storms of January and February 1990, Meteorol. Mag., 119, 201–210. 41) McIntyre, M. E., T. M. Palmer (1983), Breaking planetary waves in the stratosphere, Nature, 305, 593–600. 42) Michel, C., G. Rivière (2011), The link between Rossby wave breakings and weather regime transitions, J. Atmos. Sci., 68, 1730–1748. 43) Munich Re (2010), Significant European winter storms 1980, June 2010. Overall losses [in German]. [Available at www.munichre.com.] 44) Murray, R. J., I. Simmonds (1991), A numerical scheme for tracking cyclone centres from digital data. Part I: Development and operation of the scheme, Aust. Meteorol. Mag., 39, 155–166. 45) Nakamura, H., J. M. Wallace (1993), Synoptic behavior of baroclinic eddies during the blocking onset, Mon. Weather Rev., 121, 1892–1903. 46) Neu, U., et al., (2013), IMILAST—A community effort to intercompare extratropical cyclone detection and tracking algorithms, Bull. Am. Meteorol. Soc., 94, 529–547. 47) Orlanski, I. (2003), Bifurcation in eddy life cycles: Implications for storm track variability, J. Atmos. Sci., 60, 993–1023. 48) Parker, D. J. (1998), Secondary frontal waves in the North Atlantic region: A dynamical perspective of current ideas, Q. J. R. Meteorol. Soc., 124, 829–856. 49) Pelly, J. L., B. J. Hoskins (2003), A new perspective on blocking, J. Atmos. Sci., 60, 743–755. 50) Pfahl, S., H. Wernli (2012), Quantifying the relevance of cyclones for precipitation extremes, J. Clim., 25, 6770–6780. 51) Pinto, J. G., T. Spangehl, U. Ulbrich, P. Speth (2005), Sensitivities of a cyclone detection and tracking algorithm: Individual tracks and climatology, Meteorol. Z., 14, 823–838. 52) Pinto, J. G., S. Zacharias, A. H. Fink, G. C. Leckebusch, U. Ulbrich (2009), Factors contributing to the development of extreme North Atlantic cyclones and their relationship with the NAO, Clim. Dyn., 32, 711–737. 53) Pinto, J. G., N. Bellenbaum, M. K. Karremann, P. M. Della-Marta (2013), Serial clustering of extratropical cyclones over the North Atlantic and Europe under recent and future climate conditions, J. Geophys. Res. Atmos., 118, 12,476–12,485, doi:10.1002/2013JD020564. 54) Plant, R. S., G. C. Craig, S. L. Gray (2003), On a threefold classification of extratropical cyclogenesis, Q. J. R. Meteorol. Soc., 129, 2989–3012. 55) Raible, C. C. (2007), On the relation between extremes of midlatitude cyclones and the atmospheric circulation using ERA40, Geophys. Res. Lett., 34, L07703, doi:10.1029/2006GL029084. 57) Reed, R. J., M. D. Albright (1986), A case study of explosive cyclogenesis in the eastern Pacific, Mon. Weather Rev., 114, 2297–2319. 58) Renfrew, I. A., A. J. Thorpe, C. H. Bishop (1997), The role of the environmental flow in the development of secondary frontal cyclones, Q. J. R. Meteorol. Soc., 123, 1653–1675. 59) Riemer, M., S. C. Jones, C. A. Davis (2008), The impact of extratropical transition on the downstream flow: An idealized modelling study with a straight jet, Q. J. R. Meteorol. Soc., 134, 69–91. 60) Rivals, H., J. P. Cammas, I. A. Renfrew (1998), Secondary cyclogenesis: The initiation phase of a frontal wave observed over the eastern Atlantic, Q. J. R. Meteorol. Soc., 124, 243–267. 61) Rivière, G., A. Joly (2006a), Role of the low-frequency deformation field on the explosive growth of extratropical cyclones at the jet exit. Part I: Barotropic critical region, J. Atmos. Sci., 63, 1965–1981. 62) Rivière, G., A. Joly (2006b), Role of the low-frequency deformation field on the explosive growth of extratropical cyclones at the jet exit. Part II: Baroclinic critical region, J. Atmos. Sci., 63, 1982–1995. 63) Rivière, G., I. Orlanski (2007), Characteristics of the Atlantic storm-track eddy activity and its relation with the North Atlantic Oscillation, J. Atmos. Sci., 64, 241–266. 64) Rudeva, I., S. K. Gulev (2007), Climatology of cyclone size characteristics and their changes during the cyclone life cycle, Mon. Weather Rev., 135, 2568–2587. 65) Schär, C., H. C. Davies (1990), An instability of mature cold fronts, J. Atmos. Sci., 47, 929–950. 65) Schwierz, C., et al. (2010), Modelling European winter wind storm losses in current and future climate, Clim. Change, 101, 485–514. 66) Shaffrey, L. C., et al., (2009), UK-HiGEM: The new UK High Resolution Global Environment Model. Model description and basic evaluation, J. Clim., 22, 1861–1896. 67) Simmonds, I. (2000), Size changes over the life of sea level cyclones in the NCEP reanalysis, Mon. Weather Rev., 128, 4118–4125. 68) Simmonds, I., K. Keay (2000), Mean Southern Hemisphere extratropical cyclone behavior in the 40-year NCEP–NCAR reanalysis, J. Clim., 13, 873–885. 69) Simmons, A. J., B. J. Hoskins (1979), The downstream and upstream development of unstable baroclinic waves, J. Atmos. Sci., 36, 1239–1254. 70) Strong, C., G. Magnusdottir (2008a), How Rossby wave breaking over the Pacific forces the North Atlantic Oscillation, Geophys. Res. Lett., 35, L10706, doi:10.1029/2008GL033578. 71) Strong, C., G. Magnusdottir (2008b), Tropospheric Rossby wave breaking and the NAO/NAM, J. Atmos. Sci., 65, 2861–2876. 72) Thorncroft, C. D., B. J. Hoskins, M. E. McIntyre (1993), Two paradigms of baroclinic-wave life-cycle behaviour, Q. J. R. Meteorol. Soc., 119, 17–55. 73) Uccellini, L. W. (1990), Processes contributing to the rapid development of extratropical cyclones, in Extratropical Cyclones: The Erik Palmen Memorial Volume, edited by C. Newton and E. O. Holopainen, pp. 81–105, Am. Meteorol. Soc., Boston, Mass. 74) Ulbrich, U., A. H. Fink, M. Klawa, J. G. Pinto (2001), Three extreme storms over Europe in December 1999, Weather, 56, 70–80. 75) Vitolo, R., D. B. Stephenson, I. M. Cook, K. Mitchell-Wallace (2009), Serial clustering of intense European storms, Meteorol. Z., 18, 411–424. 76) Woollings, T., A. Hannachi, B. Hoskins (2010), Variability of the North Atlantic eddy-driven jet stream, Q. J. R. Meteorol. Soc., 136, 856–868.
Collections