Publication:
A revised scheme for the WRF surface layer formulation

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2012-03
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Meteorological Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
This study summarizes the revision performed on the surface layer formulation of the Weather Research and Forecasting (WRF) model. A first set of modifications are introduced to provide more suitable similarity functions to simulate the surface layer evolution under strong stable/unstable conditions. A second set of changes are incorporated to reduce or suppress the limits that are imposed on certain variables in order to avoid undesired effects (e. g., a lower limit in u_*). The changes introduced lead to a more consistent surface layer formulation that covers the full range of atmospheric stabilities. The turbulent fluxes are more (less) efficient during the day (night) in the revised scheme and produce a sharper afternoon transition that shows the largest impacts in the planetary boundary layer meteorological variables. The most important impacts in the near-surface diagnostic variables are analyzed and compared with observations from a mesoscale network.
Description
© 2012 American Meteorological Society. This investigation was partially supported by Projects CGL-2008-05093/CLI and CGL-2011-29677-C02 and was accomplished within the Collaboration Agreement 09/490 between CIEMAT and NCAR as well as the Collaboration Agreement 09/153 between CIEMAT and UCM. NCAR is sponsored by the National Science Foundation. We thank the Navarra government for providing us with the observations used in this study. Discussion with Fei Chen and Peggy Lemone were helpful during this work. The authors would also like to thank Maria Tombrou for her comments regarding the similarity functions in unstable conditions. We would also like to thank the reviewers for their constructive comments.
Unesco subjects
Keywords
Citation
Acevedo, O. C., and D. R. Fitzjarrald, 2001: The early evening surface-layer transition: Temporal and spatial variability. J. Atmos. Sci., 58, 2650–2667. Angevine, W. M., and T. Mauritsen, 2008: A new scheme for stable and fair-weather cumulus boundary layers in mesoscale models. Preprints, 2008 WRF Users’ Workshop, Boulder, CO, NCAR, 3-2. [Available online at www.mmm.ucar.edu/wrf/ users/workshops/WS2008/presentations/3-2.pdf.] Arya, S. P., 1988: Introduction to Micrometeorology. Academic Press, 307 pp. Beljaars, A. C. M., 1995: The parametrization of surface fluxes in large-scale models under free convection. Quart. J. Roy. Meteor. Soc., 121, 255–270. ——, and A. A. M. Holtslag, 1991: Flux parametrization over land surfaces for atmospherics models. J. Appl. Meteor., 30, 327–341. Brutsaert, W., 1992: Stability correction functions for the mean wind speed and temperature in the unstable surface layer. Geophys. Res. Lett., 19, 469–472. Businger, J. A., J. C. Wyngaard, Y. Izumi, and E. F. Bradley, 1971: Flux–profile relationships in the atmospheric surface layer. J. Atmos. Sci., 28, 181–189. Carlson, T. N., and F. E. Boland, 1978: Analysis of urban-rural canopy using a surface heat flux/temperature model. J. Appl. Meteor., 17, 998–1013. Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface hydrology model with the Penn State/NCAR MM5 modeling system. Part I: Model description and implementation. Mon. Wea. Rev., 129, 569–586. ——, and Y. Zhang, 2009: On the coupling strength between the land surface and the atmosphere: From viewpoint of surface exchange coefficients. Geophys. Res. Lett., 36, L10404, doi:10.1029/2009GL037980. Chen, Y., K. Yang, D. Zhou, J. Qin, and X. Guo, 2010: Improving Noah land surface model in arid regions with an appropriate parameterization of the thermal roughness length. J. Hydrometeor., 11, 995–1006. Cheng, Y., and W. Brutsaert, 2005: Flux-profile relationships for wind speed and temperature in the stable atmospheric boundary layer. Bound.-Layer Meteor., 114, 519-538. Dudhia, J., 1996: A multilayer soil temperature model for MM5. Preprints, Sixth PSU/NCAR Mesoscale Model Users’ Workshop, Boulder, CO, PSU/NCAR, 49–50. ——, D. Gill, K. Manning, W. Wang, and C. Bruyere, 2004: PSU/NCAR mesoscale modeling system tutorial class notes and user’s guide: MM5 modelling system version 3. PSU/NCAR, 390 pp. Dyer, A. J., 1967: The turbulent transport of heat and water vapor in unstable atmosphere. Quart. J. Roy. Meteor. Soc., 93, 501–508. ——, 1974: A review of flux-profile relationships. Bound.-Layer Meteor., 7, 363–372. ——, and E. F. Bradley, 1982: An alternative analysis of fluxgradient relationships at the 1976 ITCE. Bound.-Layer Meteor., 22, 3–19. Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, 1996: Bulk parameterization of air-sea fluxes for Tropical Ocean Global Atmosphere Coupled–Ocean Atmosphere Response Experiment. J. Geophys. Res., 101 (C2), 3747–3764. ——, ——, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parametrization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571–591. García Bustamante, E., J. F. González Rouco, J. Navarro, E. Xoplaki, P. A. Jiménez, and J. P. Montávez, 2011: North Atlantic atmospheric circulation and surface wind in the Northeast of the Iberian Peninsula: Uncertainty and long term downscaled variability. Climate Dyn., in press. Grachev, A. A., C. W. Fairall, and E. F. Bradley, 2000: Convective profile constants revisited. Bound.-Layer Meteor., 94, 495–515. Grell, G. A., J. Dudhia, and D. R. Stauffer, 1994: A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR TN-398-1-STR, 117 pp. Hicks, B. B., 1976: Wind profile relationships from the Wangara experiments. Quart. J. Roy. Meteor. Soc., 102, 535-551. Holtslag, A. A. M., and H. A. de Bruin, 1988: Applied modelling of the nighttime surface energy balance over land. J. Appl. Meteor., 27, 689–704. Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341. Izumi, Y., 1971: Kansas 1968 field program data report. Tech. Rep. Environmental Research Paper 379, Air Force Cambridge Research Laboratories, Bedford, MA, 86 pp. Jiménez, P. A., 2009: Analysis of surface wind over complex terrain: A dynamical downscaling study with the WRF model. Ph.D. thesis, Universidad Complutense de Madrid, 199 pp. ——, and J. Dudhia, 2012: Improving the representation of resolved and unresolved topographic effects on surface wind in the WRF model. J. Appl. Meteor. Climatol., 51, 300–316. ——, J. F. González Rouco, J. P. Montávez, J. Navarro, E. García Bustamante, and F. Valero, 2008: Surface wind regionalization in complex terrain. J. Appl. Meteor. Climatol., 47, 308–325. ——, ——, ——, E. García Bustamante, and J. Navarro, 2009a: Climatology of wind patterns in the northeast of the Iberian Peninsula. Int. J. Climatol., 29, 501–525. ——, J. P. Montávez, E. García Bustamante, J. Navarro, J. M. Jiménez Gutiérrez, E. E. Lucio Eceiza, and J. F. González Rouco, 2009b: Diurnal surface wind variations over complex terrain. Fís. Tierra, 21, 79–91. ——, J. F. González Rouco, E. García Bustamante, J. Navarro, J. P. Montávez, J. Vilà-Guerau de Arellano, J. Dudhia, and A. Roldán, 2010a: Surface wind regionalization over complex terrain: Evaluation and analysis of a high-resolution WRF numerical simulation. J. Appl. Meteor. Climatol., 49, 268-287. ——, ——, J. Navarro, J. P. Montávez, and E. García Bustamante, 2010b: Quality assurance of surface wind observations from automated weather stations. J. Atmos. Oceanic Technol., 27, 1101–1122. Jingyong, Z., W.-C. Wang, and L. R. Leung, 2008: Contribution of land-atmosphere coupling to summer climate variability over the contiguous United States. J. Geophys. Res., 113, D22109, doi:10.1029/2008JD010136. Li, Y., Z. Gao, D. H. Lenschow, and F. Chen, 2010: An improved approach for parameterizing turbulent transfer coefficients in numerical models. Bound.-Layer Meteor., 137, 153–165. Louis, J. F., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor., 17, 187–202. Mahrt, L., and J. Sun, 1995: The subgrid velocity scale in the bulk aerodynamic relationship for spatially averaged scalar fluxes. Mon. Wea. Rev., 123, 3032–3041. Miguez Macho, G., G. L. Stenchikov, and A. Robock, 2004: Spectral nudging to eliminate the effects of domain position and geometry in regional climate model simulations. J. Geophys. Res., 109, D13104, doi:10.1029/2003JD004495. Monin, A. S., and A. M. Obukhov, 1954: Basic laws of turulent mixing in the atmosphere near the ground. Tr. Inst. Teor. Geofiz. Akad. Nauk SSSR, 24, 1963–1987. Obukhov, A. M., 1946: Turbulence in thermally non-homogeneous atmosphere. Tr. Inst. Teor. Geofiz. Akad. Nauk SSSR, 1, 95–115. Panofsky, H. A., 1963: Determination of stress from wind and temperature measurements. Quart. J. Roy. Meteor. Soc., 89, 85–94. Park, S.-J., S.-U. Park, C.-H. Ho, and L. Mahrt, 2009: Flux-gradient relationship of water vapor in the surface layer obtained from CASES-99 experiment. J. Geophys. Res., 114, D08115, doi:10.1029/2008JD011157. Paulson, C. A., 1970: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteor., 9, 857–861. Poulos, G. S., and Coauthors, 2002: CASES-99: A comprehensive investigation of the stable nocturnal boundary layer. Bull. Amer. Meteor. Soc., 83, 555–581. Shin, H. H., and S. Hong, 2011: Intercomparison of planetary boundary-layer parametrizations in the WRF model for a single day from CASES-99. Bound.-Layer Meteor., 139, 1–21. Skamarock, W. C., and Coauthors, 2008: A description of the advanced research WRF version 3. Tech. Rep. TN-4751STR, NCAR, 113 pp. Sorbjan, Z., 2010: Gradient-based scales and similarity laws in the stable boundary layer. Quart. J. Roy. Meteor. Soc., 136, 1243–1254. ——, and A. A. Grachev, 2010: An evaluation of the flux-gradient relationship in the stable boundary layer. Bound. Layer Meteor., 135, 385–405. Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp. van Ulden, A. P., and A. A. M. Holtslag, 1985: Estimation of atmospheric boundary layer parameters for diffusion applications. J. Climate Appl. Meteor., 24, 1196–1207. Webb, K., 1970: Profile relationships: The log-linear range, and extension to strong stability. Quart. J. Roy. Meteor. Soc., 96, 67–90. Weisman, M. L., C. Davis, W. Wang, K. W. Manning, and J. B. Klemp, 2008: Experiences with 0–36-h explicit convective forecast with the WRF-ARW model. Wea. Forecasting, 23, 407–437. Wilson, D. K., 2001: An alternative function for the wind and temperature gradients in unstable surface layers. Bound.- Layer Meteor., 99, 492–501. Zhang, D. L., and R. A. Anthes, 1982: A high-resolution model of the planetary boundary layer—Sensitivity tests and comparisons with SESAME-79 data. J. Appl. Meteor., 21, 1594-1609.
Collections