Publication:
Two common psychophysical measures of surround suppression reflect independent neuronal mechanisms.

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2015
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Scholar One
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Psychophysical surround suppression is believed to reflect inhibitory neuronal mechanisms in visual cortex. In recent years, two psychophysical measures of surround suppression have been much studied: (i) duration thresholds on a motion-discrimination task (which are worse for larger than for smaller stimuli) and (ii) contrast thresholds on a contrast-detection task (which are worse when grating stimuli are surrounded by a stimulus of the same orientation than when they are presented in isolation or surrounded by a stimulus of orthogonal orientation). Changes in both metrics have been linked to several different human conditions, including aging, differences in intelligence, and clinical disorders such as schizophrenia, depression, and autism. However, the exact nature of the neuronal correlate underlying these phenomena remains unclear. Here, we use an individual-differences approach to test the hypothesis that both measures reflect the same property of the visual system, e.g., the strength of GABA-ergic inhibition across visual cortex. Under this hypothesis we would expect the two measures to be significantly positively correlated across individuals. In fact, they are not significantly correlated. In addition, we replicate the previously reported correlation between age and motion-discrimination surround suppression, but find no correlation between age and contrast-detection surround suppression. We conclude that the two forms of psychophysical surround suppression arise independently from different cortical mechanisms.
Description
Keywords
Citation
Aaen-Stockdale, C. R., Thompson, B., Huang, P., & Hess, R. F. (2009). Low-level mechanisms may contribute to paradoxical motion percepts. Journal of Vision, 9(5):9, 1–14, doi:10.1167/9.5.9. [PubMed] [Article] Alitto, H. J., & Dan, Y. (2010). Function of inhibition in visual cortical processing. Current Opinion in Neurobiology, 20, 340–346. Allman, J., Meizin, F., & McGuiness, E. (1985). Direction- and velocity-specific responses from beyond the classical receptive field in the middle temporal visual area (MT). Perception, 14, 105–126. Anderson, S. J., & Burr, D. C. (1991). Spatial summation properties of directionally selective mechanisms in human vision. Journal of the Optical Society of America A, 8(8), 1330–1339. Andriessen, J. J., & Bouma, H. (1976). Eccentric vision: Adverse interactions between line segments. Vision Research, 16(1), 71–78. Angelucci, A., & Bressloff, P. C. (2006). Contribution of feedforward, lateral and feedback connections to the classical receptive field center and extraclassical receptive field surround of primate V1 neurons. Progress in Brain Research, 154, 93–120. Battista, J., Badcock, D. R., & McKendrick, A. M. (2010). Center–surround visual motion processing in migraine. Investigative Ophthalmology & Visual Science, 51, 6070–6076. [PubMed] [Article] Battista, J., Badcock, D. R., & McKendrick, A. M. (2011). Migraine increases centre–surround suppression for drifting visual stimuli. PLoS One, 6(4), e18211. Benevento, L. A., Creutzfeldt, O. D., & Kuhnt, U. (1972). Significance of intracortical inhibition in the visual cortex. Nature: New Biology, 238(82), 124– 126. Betts, L. R., Sekuler, A., & Bennett, P. J. (2009). Spatial characteristics of center–surround antagonism in younger and older adults. Journal of Vision, 9(1):25, 1–15, doi:10.1167/9.1.25. [PubMed] [Article] Betts, L. R., Sekuler, A., & Bennett, P. J. (2012). Spatial characteristics of motion-sensitive mechanisms change with age and stimulus spatial frequency. Vision Research, 53, 1–14. Betts, L. R., Taylor, C. P., Sekuler, A. B., & Bennett, P. J. (2005). Aging reduces center–surround antagonism in visual motion processing. Neuron, 45(3), 361–366. Blakemore, C., & Tobin, E. (1972). Lateral inhibition between orientation detectors in the cat’s visual cortex. Experimental Brain Research, 15(4), 439– 440. Brainard, D. (1997). The Psychophysics Toolbox. Spatial Vision, 10, 433–436. Cannon, M. W., & Fullenkamp, S. C. (1991). Spatial interactions in apparent contrast: Inhibitory effects among grating patterns of different spatial frequencies, spatial positions and orientations. Vision Research, 31(11), 1985–1998. Cavanaugh, J., Joiner, W. M., & Wurtz, R. H. (2012). Suppressive surrounds of receptive fields in monkey frontal eye field. The Journal of Neuroscience, 32(35), 12284–12293. Cavanaugh, J. R., Bair, W., & Movshon, J. A. (2002). Nature and interaction of signals from the receptive field center and surround in macaque V1 neurons. The Journal of Physiology, (0022-3077 (Print)). Chen, Y., Norton, D., & Ongur, D. (2008). Altered center–surround motion inhibition in schizophrenia. Biological Psychiatry, 64(1), 74–77. Churan, J., Khawaja, F. A., Tsui, J. M. G., & Pack, C. C. (2008). Brief motion stimuli preferentially activate surround-suppressed neurons in macaque visual area MT. Current Biology, 18, R1051– R1052. DeAngelis, G. C., Robson, J. G., & Freeman, R. D. (1992). Organization of suppression in receptive fields of neurons in cat visual cortex. Journal of Neurophysiology, 68, 144–163. Draper, N. R., & Smith, H. (1998). Applied regression analysis (3rd ed.). Hoboken, NJ: Wiley. Durand, S., Freeman, T. C., & Carandini, M. (2007). Temporal properties of surround suppression in cat primary visual cortex. Visual Neuroscience, 24(5), 679–690. Ejima, Y., & Takahashi, S. (1985). Apparent contrast of a sinusoidal grating in the simultaneous presence of peripheral gratings. Vision Research, 25, 1223– 1232. Elliott, D., Whitaker, D., & MacVeigh, D. (1990). Neural contribution to spatiotemporal contrast sensitivity decline in healthy ageing eyes. Vision Research, 30(4), 541–547. Falkner, A. L., Krishna, B. S., & Goldberg, M. E. (2010). Surround suppression sharpens the priority map in the lateral intraparietal area. The Journal of Neuroscience, 30(38), 12787–12797. Flevaris, A. V., & Murray, S. O. (2014). Orientationspecific surround suppression in the primary visual cortex varies as a function of autistic tendency. Frontiers in Human Neuroscience, 8, 1017. Foss-Feig, J. H., Tadin, D., Schauder, K. B., & Cascio, C. J. (2013). A substantial and unexpected enhancement of motion perception in autism. The Journal of Neuroscience, 33(19), 8243–8249. Fu, Y., Yu, S., Ma, Y., Wang, Y., & Zhou, Y. (2013). Functional degradation of the primary visual cortex during early senescence in rhesus monkeys. Cerebral Cortex, 23, 2923–2931. Gieselmann, M. A., & Thiele, A. (2008). Comparison of spatial integration and surround suppression characteristics in spiking activity and the local field potential in macaque V1. European Journal of Neuroscience, 28(3), 447–459. Glasser, D. M., & Tadin, D. (2010). Low-level mechanisms do not explain paradoxical motion percepts. Journal of Vision, 10(4):20, 1–29, doi:10. 1167/10.4.20. [PubMed] [Article] Golomb, J. D., McDavitt, J. R. B., Ruf, B. M., Chen, J. I., Saricicek, A., Maloney, K. H., et al. (2009). Enhanced visual motion perception in major depressive disorder. The Journal of Neuroscience, 29(28), 9072–9077. Hua, T., Kao, C., Sun, Q., Li, X., & Zhou, Y. (2008). Decreased proportion of GABA neurons accompanies age-related degradation of neuronal function in cat striate cortex. Brain Research Bulletin, 75, 119–125. Hua, T., Li, X., He, L., Zhou, Y., Wang, Y., & Leventhal, A. G. (2006). Functional degradation of visual cortical cells in old cats. Neurobiology in Aging, 27, 155–162. Huang, X., Albright, T. D., & Stoner, G. R. (2007). Adaptive surround modulation in cortical area MT. Neuron, 53(5), 761–770. Huang, X., Albright, T. D., & Stoner, G. R. (2008). Stimulus dependency and mechanisms of surround modulation in cortical area MT. The Journal of Neuroscience, 28(51), 13889–13906. Hupe, J. M., James, A. C., Payne, B. R., Lomber, S. G., Girard, P., & Bullier, J. (1998). Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons. Nature, 394(6695), 784–787. Ichida, J. M., Schwabe, L., Bressloff, P. C., & Angelucci, A. (2007). Response facilitation from the ‘‘suppressive’’ receptive field surround of macaque V1 neurons. Journal of Neurophysiology, 98(4), 2168–2181. Jones, H. E., Grieve, K. L., Wang, W., & Sillito, A. M. (2001). Surround suppression in primate V1. The Journal of Neuroscience, 86, 2011–2028. Karas, R., & McKendrick, A. M. (2009). Aging alters surround modulation of perceived contrast. Journal of Vision, 9(5):11, 1–9, doi:10.1167/9.5.11. [PubMed] [Article] Karas, R., & McKendrick, A. M. (2011). Increased surround modulation of perceived contrast in the elderly. Optometry and Visual Science, 88(11), 1298–1308. Karas, R., & McKendrick, A. M. (2012). Age related changes to perceptual surround suppression of moving stimuli. Seeing and Perceiving, 25(5), 409– 424. Karas, R., & McKendrick, A. M. (2015). Contrast and stimulus duration dependence of perceptual surround suppression in older adults. Vision Research, 110, 7–14. Kleiner, M., Brainard, D., & Pelli, D. (2007). What’s new in Psychtoolbox 3? Perception 36 European Conference on Visual Perception, Abstract Supplement 14. Koldewyn, K., Whitney, D., & Rivera, S. M. (2010). The psychophysics of visual motion and global form processing in autism. Brain, 133(2), 599–610. Lev, M., & Polat, U. (2011). Collinear facilitation and suppression at the periphery. Vision Research, 51, 2488–2498. Leventhal, A., Wang, Y., Pu, M., Zhou, Y., & Ma, Y. (2003). GABA and its agonists improved visual cortical function in senescent monkeys. Science, 300, 812–815. Liang, Z., Yang, Y., Li, G., Zhang, J., Wang, Y., Zhou, Y., & Leventhal, A. G. (2010). Aging affects the direction selectivity of MT cells in rhesus monkeys. Neurobiology of Aging, 31(5), 863–873. Maffei, L., & Fiorentini, A. (1976). The unresponsive regions of visual cortical receptive fields. Vision Research, 16(10), 1131–1139. Melnick, M. D., Harrison, B. R., Park, S., Bennetto, L., & Tadin, D. (2013). A strong interactive link between sensory discriminations and intelligence. Current Biology, 23(11), 1013–1017. Nurminen, L., & Angelucci, A. (2014). Multiple components of surround modulation in primary visual cortex: Multiple neural circuits with multiple functions? Vision Research, 104, 47–56. Owsley, C. (2011). Aging and vision. Vision Research, 51(13), 1610–1622. Park, W. J., & Tadin, D. (2014). Mechanisms of motion-based object segregation. Journal of Vision, 14(10): 259, doi:10.1167/14.10.259. [Abstract] Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10, 437–442. Petrov, Y., Carandini, M., & McKee, S. P. (2005). Two distinct mechanisms of suppression in human vision. The Journal of Neuroscience, 25(38), 8704– 8707. Pinto, J. G. A., Hornby, K. R., Jones, D. G., & Murphy, K. M. (2010). Developmental changes in GABAergic mechanisms in human visual cortex across the lifespan. Frontiers in Cellular Neuroscience, 4, 16. Polat, U., & Sagi, D. (1993). Lateral interactions between spatial channels: Suppression and facilitation revealed by lateral masking experiments. Vision Research, 33, 993–999. Read, J. C., Georgiou, R., Brash, C., Yazdani, P., Whittaker, R., Trevelyan, A. J., & SerranoPedraza, I. (2015). Moderate acute alcohol intoxication has minimal effect on surround suppression measured with a motion direction discrimination task. Journal of Vision, 15(1):5, 1–14, doi:10.1167/ 15.1.5. [PubMed] [Article] Reynolds, J. H., & Heeger, D. J. (2009). The normalization model of attention. Neuron, 61(2), 168–185. Robol, V., Tibber, M. S., Anderson, E. J., Bobin, T., Carlin, P., Shergill, S. S., et al. (2013). Reduced crowding and poor contour detection in schizophrenia are consistent with weak surround inhibition. PLoS One, 8(4), e60951. Sanacora, G., Mason, G. F., Rothman, D. L., Behar, K. L., Hyder, F., Petroff, O. A., et al. (1999). Reduced cortical gamma-aminobutyric acid levels in depressed patients determined by proton magnetic resonance spectroscopy. Archives of General Psychiatry, 56(11), 1043–1047. Sanayei, M., Herrero, J. L., Distler, C., & Thiele, A. (2015). Attention and normalization circuits in macaque V1. European Journal of Neuroscience, 41, 949–964. Sceniak, M. P., Ringach, D. L., Hawken, M. J., & Shapley, R. (1999). Contrast’s effect on spatial summation by macaque V1 neurons. Nature Neuroscience, 2(8), 733–739. Sengpiel, F., Sen, A., & Blakemore, C. (1997). Characteristics of surround inhibition in cat area 17. Experimental Brain Research, 116(2), 216–228. Serrano-Pedraza, I., Grady, J. P., & Read, J. C. (2012). Spatial frequency bandwidth of surround suppression tuning curves. Journal of Vision, 12(6):24, 1– 11, doi:10.1167/12.6.24. [PubMed] [Article] Serrano-Pedraza, I., Romero-Ferreiro, V., Read, J. C., Dieguez-Risco, T., Bagney, A., Caballero-Gonzalez, M., . . . Rodriguez-Jimenez, R. (2014). Reduced visual surround suppression in schizophrenia shown by measuring contrast detection thresholds. Frontiers in Psychology, 5, 1431. Shushruth, S., Ichida, J. M., Levitt, J. B., & Angelucci, A. (2009). Comparison of spatial summation properties of neurons in macaque V1 and V2. Journal of Neurophysiology, 102(4), 2069–2083. Smith, M. A. (2006). Surround suppression in the early visual system. The Journal of Neuroscience, 26(14), 3624–3625. Snowden, R. J., & Hammett, S. T. (1998). The effects of surround contrast on contrast thresholds, perceived contrast and contrast discrimination. Vision Research, 38, 1935–1945. Sundberg, K. A., Mitchell, J. F., & Reynolds, J. H. (2009). Spatial attention modulates center–surround interactions in macaque visual area V4. Neuron, 61(6), 952–963. Tadin, D., Kim, J., Doop, M. L., Gibson, C., Lappin, J. S., Blake, R., et al. (2006). Weakened center– surround interactions in visual motion processing in schizophrenia. The Journal of Neuroscience, 26(44), 11403–11412. Tadin, D., Lappin, J. S., Gilroy, L. A., & Blake, R. (2003). Perceptual consequences of centre–surround antagonism in visual motion processing. Nature, 424(6946), 312–315. Tadin, D., Paffen, C. L. E., Blake, R., & Lappin, J. S. (2009). Contextual modulations of center–surround interactions in motion revealed with the motion aftereffect. Journal of Vision, 8(7):9, 1–11, doi:10. 1167/8.7.9. [PubMed] [Article] Tailby, C., Solomon, S. G., Peirce, J. W., & Metha, A. B. (2007). Two expressions of ‘‘surround suppression’’ in V1 that arise independent of cortical mechanisms of suppression. Visual Neuroscience, 124, 99–109. Tibber, M. S., Anderson, E. J., Bobin, T., Antonova, E., Seabright, A., Wright, B., et al. (2013). Visual surround suppression in schizophrenia. Frontiers in Psychology, 4, 88. Tsui, J. M., Hunter, J. N., Born, R. T., & Pack, C. C. (2010). The role of V1 surround suppression in MT motion integration. Journal of Neurophysiology, 103(6), 3123–3138. Tsui, J. M., & Pack, C. C. (2011). Contrast sensitivity of MT receptive field centers and surrounds. Journal of Neurophysiology, 106(4), 1888–1900. Walker, G. A., Ohzawa, I., & Freeman, R. D. (1998). Binocular cross-orientation suppression in the cat’s striate cortex. Journal of Neurophysiology, 79(1), 227–239. Wassef, A., Baker, J., & Kochan, L. D. (2003). GABA and schizophrenia: A review of basic science and clinical studies. Journal of Clinical Psychoparmacology, 23(6), 601–640. Webb, B. S., Dhruv, N. T., Solomon, S. G., Tailby, C., & Lennie, P. (2005). Early and late mechanisms of surround suppression in striate cortex of macaque. The Journal of Neuroscience, 25(50), 11666–11675. Xing, J., & Heeger, D. J. (2000). Center–surround interactions in foveal and peripheral vision. Vision Research, 40, 3065–3072. Yang, E., Tadin, D., Glasser, D., Hong, S., Blake, R., & Park, S. (2013a). Visual context processing in bipolar disorder: A comparison with schizophrenia. Frontiers in Psychology, 4, 569. Yang, E., Tadin, D., Glasser, D. M., Hong, S. W., Blake, R., & Park, S. (2013b). Visual context processing in schizophrenia. Clinical Psychological Science, 1(1), 5–15. Yang, Y., Zhang, J., Liang, Z., Li, G., Wang, Y., Ma, Y., et al. (2009). Aging affects the neural representation of speed in macaque area MT. Cerebral Cortex, 19(9), 1957–1967. Yoon, J. H., Maddock, R. J., Rokem, A. S., Silver, M. A., Minzenberg, M. J., Ragland, D., et al. (2010). GABA concentration is reduced in visual cortex in schizophrenia and correlates with orientation-specific surround suppression. The Journal of Neuroscience, 30, 3777–3781. Yoon, J. H., Rokem, A. S., Silver, M. A., Minzenberg, M. J., Ursu, S., Ragland, D., & Carter, C. S. (2009). Diminished orientation-specific surround suppression of visual processing in schizophrenia. Schizophrenia Bulletin, 35, 1078–1084. Yu, C., & Levi, D. M. (2000). Surround modulation in human vision unmasked by masking experiments. Nature Neuroscience, 3, 724–728. Zenger-Landolt, B., & Heeger, D. J. (2003). Response suppression in V1 agrees with psychophysics of surround masking. The Journal of Neuroscience, 23(17), 6884–6893.
Collections