Publication:
Comparing the effect of the interaction between fine and coarse scales and surround suppression on motion discrimination.

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2013
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Scholar One
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Our ability to discriminate motion direction in a Gabor patch diminishes with increasing size and contrast, indicating surround suppression. Discrimination is also impaired by a static low-spatial-frequency patch added to the moving stimulus, suggesting an antagonism between sensors tuned to fine and coarse features. Using Bayesian staircases, we measured duration thresholds in motion-direction discrimination tasks using vertically oriented Gabor patches moving at 2°/s. In two experiments, we tested two contrasts (2.8% and 46%), five window sizes (from 0.7° to 5°), and two spatial frequencies (1 c/deg and 3 c/deg), either presented alone or added to a static pattern. When the moving pattern was presented alone, duration thresholds increased with size at high contrast and decreased with size at low contrast. At low contrast, when a static pattern of 3 c/deg was added to a moving pattern of 1 c/deg, duration thresholds were similar to the case when the moving pattern was presented alone; however, at high contrast, duration thresholds were facilitated, eliminating the effect of surround suppression. When a static pattern of 1 c/deg was added to a moving pattern of 3 c/deg, duration thresholds increased about 4 times for high contrast and 2 times for low contrast. These results show that the antagonism between sensors tuned to fine and coarse scales is more complex than surround suppression, suggesting that it reflects the operation of a different mechanism.
Description
Keywords
Citation
Allman, J., Miezin, F., & McGuiness, E. (1985a). Stimulus specific responses from beyond the classical receptive field: Neurophysiological mechanisms for local-global comparisons in visual neurons. Annual Review of Neuroscience, 8, 407– 430. Allman, J., Miezin, F., & McGuiness, E. (1985b). Direction- and velocity-specific responses from beyond the classical receptive field in the middle temporal visual area (MT). Perception, 14(2), 105– 126. Anderson, A. J. (2003). Utility of a dynamic termination criterion in the ZEST adaptive threshold method. Vision Research, 43, 165–170. Anderson, S. J., & Burr, D. C. (1985). Spatial and temporal selectivity of the human motion detection system. Vision Research, 25(8), 1147–1154. Anderson, S. J., & Burr, D. C. (1987). Receptive field size of human motion detection units. Vision Research, 27(4), 621–636. Anderson, S. J., & Burr, D. C. (1989). Receptive field properties of human motion detector units inferred from spatial frequency masking. Vision Research, 29(10), 1343–1358. Anderson, S. J., & Burr, D. C. (1991). Spatial summation properties of directionally selective mechanisms in human vision. Journal of the Optical Society of America A, 8(8), 1330–1339. Anderson, S. J., Burr, D. C., & Morrone, M. C. (1991). Two-dimensional spatial and spatial-frequency selectivity of motion-sensitive mechanisms in human vision. Journal of the Optical Society of America A, 8(8), 1340–1351. Born, R. T., & Tootell, R. B. H. (1992). Segregation of global and local motion processing in the primate middle temporal visual area. Nature, 357, 497–499. Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10(4), 433–436. Churan, J., Khawaja, F. A., Tsui, J. M., & Pack, C. C. (2008). Brief motion stimuli preferentially activate surround-suppressed neurons in macaque visual area MT. Current Biology, 18, 1051–1052. Derrington, A. M., Fine, I., & Henning, G. B. (1993). Errors in direction-of-motion discrimination with dichoptically viewed stimuli. Vision Research, 33(11), 1491–1494. Derrington, A. M., & Henning, G. B. (1987). Errors in direction-of-motion discrimination with complex stimuli. Vision Research, 27(1), 61–75. Eifuku, S., & Wurtz, R. H. (1998). Response to motion in extrastriate area MSTl: Center-surround interactions. Journal of Neurophysiology, 80, 282–296. Emerson, P. L. (1986). Observations on maximumlikelihood and Bayesian methods of forced-choice sequential threshold estimation. Perception & Psychophysics, 39, 151–153. García-Pérez, M. A. (1998). Forced-choice staircases with fixed steps sizes: Asymptotic and small-sample properties. Vision Research, 38, 1861–1881. Gilbert, C. D., Das, A., Ito, M., Kapadia, M. K., & Westheimer, G. (1996). Spatial integration and cortical dynamics. Proceedings of the National Academy of Sciences, USA, 93, 615–622. Glasser, D. M., & Tadin, D. (2010). Low-level mechanisms do not explain paradoxical motion percepts. Journal of Vision, 10(4):20, 1–9, http:// www.journalofvision.org/content/10/4/20, doi:10. 1167/10.4.20. [PubMed] [Article] Henning, G. B., & Derrington, A. M. (1988). Direction-of-motion discrimination with complex patterns: Further observations. Journal of the Optical Society of America A, 5(10), 1759–1766. Huang, X., Albright, T. D., & Stoner, G. R. (2008). Stimulus dependency and mechanisms of surround modulation in cortical area MT. Journal of Neuroscience, 28(51), 13889–13906. Kapadia, M. K., Westheimer, G., & Gilbert, C. D. (1999). Dynamics of spatial summation in primary visual cortex of alert monkeys. Proceedings of the National Academy of Sciences, USA, 96(21), 12073– 12078. King-Smith, P. E., Grigsby, S. S., Vingrys, A. J., Benes, S. C., & Supowit, A. (1994). Efficient and unbiased modifications of the QUEST threshold method: Theory, simulations, experimental evaluation and practical implementation. Vision Research, 34, 885– 912. Kleiner, M., Brainard, D. H., & Pelli, D. G. (2007). What’s new in Psychtoolbox-3? Perception, 36 (ECVP Abstract Supplement). Nauhaus, I., Busse, L., Carandini, M., & Ringach, D. L. (2009). Stimulus contrast modulates functional connectivity in visual cortex. Nature Neuroscience, 12(1), 70–76. Nguyen-Tri, D., & Faubert, J. (2007). Luminance texture increases perceived speed. Vision Research, 47(5), 723–734. Nishida, S. (2011). Advancement of motion psychophysics: Review 2001–2010. Journal of Vision, 11(5):11, 1–53, http://www.journalofvision.org/ content/11/5/11, doi:10.1167/11.5.11. [PubMed] [Article] Pack, C. C., Hunter, N., & Born, R. T. (2005). Contrast dependence of suppressive influences in cortical area MT of alert macaque. Journal of Neurophysiology, 93, 1809–1815. Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10(4), 437–442. Pentland, A. (1980). Maximum likelihood estimation: The best PEST. Perception & Psychophysics, 28, 377–379. Sceniak, M. P., Ringach, D. L., Hawken, M. J., & Shapley, R. (1999). Contrast’s effect on spatial summation by macaque V1 neurons. Nature Neuroscience, 2, 733–739. Serrano-Pedraza, I., & Derrington, A. M. (2010). Antagonism between fine and coarse motion sensors depends on stimulus size and contrast. Journal of Vision, 10(18):18, 1–12, http://www. journalofvision.org/content/10/18/18, doi:10.1167/ 10.18.18. [PubMed] [Article] Serrano-Pedraza, I., Gamonoso-Cruz, M. J., SierraVázquez, V., & Derrington, A. M. (2012). Interaction between fine and coarse scales impairs motion discrimination more strongly than surround suppression. Perception, 41, 119. Serrano-Pedraza, I., Goddard, P., & Derrington, A. M. (2007). Evidence for reciprocal antagonism between motion sensors tuned to coarse and fine features. Journal of Vision, 7(12):8, 1–14, http://www. journalofvision.org/content/7/12/8, doi:10.1167/7. 12.8. [PubMed] [Article] Serrano-Pedraza, I., Hogg, E. L., & Read, J. C. A. (2011). Spatial non-homogeneity of the antagonistic surround in motion perception. Journal of Vision, 11(2):3, 1–9, http://www.journalofvision. org/content/11/2/3, doi:10.1167/11.2.3. [PubMed] [Article] Tadin, D., & Lappin, J. S. (2005). Optimal size for perceiving motion decreases with contrast. Vision Research, 45, 2059–2064. Tadin, D., Lappin, J. S., Gilroy, L. A., & Blake, R. (2003). Perceptual consequences of centre–surround antagonism in visual motion processing. Nature, 424, 312–315. Tanaka, K., Hokosaka, K., Saito, H., Yukie, M., Fukada, Y., & Iwai, E. (1986). Analysis of local and wide-field movements in the superior temporal visual areas of the macaque monkey. Journal of Neuroscience, 6(1), 134–144. Treutwein, B. (1995). Adaptive psychophysical procedures. Vision Research, 35(17), 2503–2522. Watson, A. B., & Turano, K. (1995). The optimal motion stimulus. Vision Research, 35, 325–336.
Collections