Publication:
Spatial non-homogeneity of the antagonistic surround in motion perception.

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2011
Authors
Hogg, Ellen L
Read, Jenny C A
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
At high contrast, duration thresholds for motion direction discrimination deteriorate with increasing stimulus size. This counterintuitive result has been explained by the center-surround antagonism present in the neurons of visual area MT. Conversely, at very low contrast, direction discrimination improves with increasing size, a result that has been explained by spatial summation. In this investigation, we study the effects of stimulus shape and contrast on center-surround antagonism. Using adaptive Bayesian staircases, we measured duration thresholds of 5 subjects for vertically oriented Gabor patches of 1 cycle/deg with two types of oval Gaussian windows, one vertically elongated (Sx = 0.35, Sy = 2.5 deg) and other horizontally elongated (Sx = 2.5, Sy = 0.35 deg) moving rightward or leftward at a speed of 2 deg/s. We found that at high contrast (92%) duration thresholds were lower for vertically than horizontally elongated windows. However, at low contrast (2.8%), we found that duration thresholds were lower for horizontally than vertically elongated windows. These asymmetric results mirror the spatial non-homogeneity of the antagonistic surround found in MT neurons and suggest that the underlying center-surround antagonism is stronger along the direction of motion.
Description
Keywords
Citation
Allman, J., Miezin, F., & McGuiness, E. (1985a). Direction- and velocity-specific responses from beyond the classical receptive field in the middle temporal visual area (MT). Perception, 14, 105–126. Allman, J., Miezin, F., & McGuiness, E. (1985b). Stimulus-specific responses from beyond the classical receptive field: Neurophysiological mechanisms for local-glial comparison in visual neurons. Annual Review of Neuroscience, 8, 407–430. Anderson, A. J. (2003). Utility of a dynamic termination criterion in the ZEST adaptive threshold method. Vision Research, 43, 165–170. Anderson, S. J., Burr, D. C., & Morrone, M. C. (1991). Two-dimensional spatial and spatial-frequency selectivity of motion-sensitive mechanisms in human vision. Journal of the Optical Society of America A, 8, 1340–1351. Betts, L. R., Sekuler, A. B., & Bennet, P. J. (2009). Spatial characteristics of center–surround antagonism in younger and older adults. Journal of Vision, 9(1):25, 1–15, http://www.journalofvision.org/content/9/1/25, doi:10.1167/9.1.25. [PubMed] [Article] Born, R. T., & Bradley, D. C. (2005). Structure and function of visual area MT. Annual Review of Neuroscience, 28, 157–189. Born, R. T., & Tootell, R. B. H. (1992). Segregation of global and local motion processing in the primate middle temporal visual area. Nature, 357, 497–499. Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433–436. Cavanaugh, J. R., Bair, W., & Movshon, J. A. (2002). Nature and interaction of signals from the receptive field center and surround in Macaque V1 neurons. Journal of Neurophysiology, 88, 2530–2546. Derrington, A. M., & Goddard, P. (1989). Failure of motion discrimination at high contrasts: Evidence for saturation. Vision Research, 29, 1767–1776. Emerson, P. L. (1986). Observations on maximumlikelihood and Bayesian methods of forced-choice sequential threshold estimation. Perception & Psychophysics, 39, 151–153. García-Pérez, M. A. (1998). Forced-choice staircases with fixed steps sizes: Asymptotic and small-sample properties. Vision Research, 38, 1861–1881. Gilbert, C. D., Das, A., Ito, M., Kapadia, M. K., & Westheimer, G. (1996). Spatial integration and cortical dynamics. Proceedings of the National Academy of Sciences of the United States of America, 93, 615–622. Huang, X., Albright, T. D., & Stoner, G. R. (2008). Stimulus dependency and mechanisms of surround modulation in cortical area MT. Journal of Neuroscience, 28, 13889–13906. Kapadia, M. K., Westheimer, G., & Gilbert, C. D. (1999). Dynamics of spatial summation in primary visual cortex of alert monkeys. Proceedings of the National Academy of Sciences of the United States of America, 96, 12073–12078. King-Smith, P. E., Grigsby, S. S., Vingrys, A. J., Benes, S. C., & Supowit, A. (1994). Efficient and unbiased modifications of the QUEST threshold method: Theory, simulations, experimental evaluation and practical implementation. Vision Research, 34, 885–912. Lappin, J. S., Tadin, D., Nyquist, J. B., & Corn, A. L. (2009). Spatial and temporal limits of motion perception across variations in speed, eccentricity, and low vision. Journal of Vision, 9(1):30, 1–14, http://www. journalofvision.org/content/9/1/30, doi:10.1167/ 9.1.30. [PubMed] [Article] Nauhaus, I., Busse, L., Carandini, M., & Ringach, D. L. (2009). Stimulus contrast modulates functional connectivity in visual cortex. Nature Neuroscience, 12, 70–76. Pack, C. C., Hunter, N., & Born, R. T. (2005). Contrast dependence of suppressive influences in cortical area MT of alert Macaque. Journal of Neurophysiology, 93, 1809–1815. Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10, 437–442. Pentland, A. (1980). Maximum likelihood estimation: The best PEST. Perception & Psychophysics, 28, 377–379. Journal of Vision (2011) 11(2):3, 1–9 Serrano-Pedraza, Hogg, & Read 8 Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/Journals/JOV/933481/ on 04/11/2016 Raiguel, S., Van Hulle, M. M., Xiao, D. K., Marcar, V. L., & Orban, G. A. (1995). Shape and spatial distribution of receptive fields and antagonistic motion surrounds in the middle temporal area (V5) of the macaque. European Journal of Neuroscience, 7, 2064–2082. Rajimehr, R. (2005). Anisotropic center-surround antagonism in visual motion perception [Abstract]. Journal of Vision, 5(8):133, 133a, http://www.journalofvision. org/content/5/8/133, doi:10.1167/5.8.133. Sceniak, M. P., Ringach, D. L., Hawken, M. J., & Shapley, R. (1999). Contrast’s effect on spatial summation by macaque V1 neurons. Nature Neuroscience, 2, 733–739. Serrano-Pedraza, I., Hogg, L., & Read, J. C. A. (2010). Anisotropic facilitation in motion discrimination at low contrast. Perception, 39, 95. Tadin, D., & Lappin, J. S. (2005). Optimal size for perceiving motion decreases with contrast. Vision Research, 45, 2059–2064. Tadin, D., Lappin, J. S., Gilroy, L. A., & Blake, R. (2003). Perceptual consequences of centre–surround antagonism in visual motion processing. Nature, 424, 312–315. Tanaka, K., Hokosaka, K., Saito, H., Yukie, M., Fukada, Y., & Iwai, E. (1986). Analysis of local and wide-field movements in the superior temporal visual areas of the macaque monkey. Journal of Neuroscience, 6, 134–144. Treutwein, B. (1995). Adaptive psychophysical procedures. Vision Research, 35, 2503–2522. Van Doorn, A. J., & Koenderink, J. J. (1984). Spatiotemporal integration in the detection of coherent motion. Vision Research, 24, 47–53. Xiao, D. K., Raiguel, S., Marcar, V., Koenderink, J., & Orban, G. A. (1995). Spatial heterogeneity of inhibitory surrounds in the middle temporal visual area. Proceedings of the National Academy of Sciences of the United States of America, 92, 11303–11306. Xiao, D. K., Raiguel, S., Marcar, V., & Orban, G. A. (1997). The spatial distribution of the antagonistic surround of MT/V5 neurons. Cerebral Cortex, 7, 662–677.
Collections