Publication:
Sensitivity of the MM5 mesoscale model to physical parameterizations for regional climate studies: Annual cycle

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2007-02-16
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Geophysical Union
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We present an analysis of the sensitivity to different physical parameterizations of a high-resolution simulation of the MM5 mesoscale model over the Iberian Peninsula. Several (16) 5-year runs of the MM5 model with varying parameterizations of microphysics, cumulus, planetary boundary layer and longwave radiation have been carried out. The results have been extensively compared with observational precipitation and surface temperature data. The parameterization uncertainty has also been compared with that related to the boundary conditions and the varying observational data sets. The annual cycles of precipitation and surface temperature are well reproduced. The summer season presents the largest deviations, with a 5 K cold bias in the southeast and noticeable precipitation errors over mountain areas. The cold bias seems to be related to the surface, probably because of the excessive moisture availability of the five-layer soil scheme used. No parameterization combination was found to perform best in simulating both precipitation and surface temperature in every season and subregion. The Kain-Fritsch cumulus scheme was found to produce unrealistically high summer precipitation. The longwave radiation parameterizations tested were found to have little impact on our target variables. Other factors, such as the choice of boundary conditions, have an impact on the results as large as the selection of parameterizations. The range of variability in the MM5 physics ensemble is of the same order of magnitude as the observational uncertainty, except in summer, when it is larger and probably related to the inaccuracy of the model to reproduce the summer precipitation over the area.
Description
Copyright 2007 by the American Geophysical Union. This study was financially supported by projects REN2002-04584-C04-01-CLI, REN-2002-04584-C04-04-CLI, CGL2005-06966-C07-04/CLI and CGL2005-06966-C07-05/CLI of the Spanish Ministry of Science and Technology. Jesús Fernández received support from the Department of Education, Universities and Research of the Basque Autonomous Government through grant BFI04.52. J. Sáenz received support by the research groups’ support program, project 9/UPV 00060.310-15343/2003, University of the Basque Country. The gridded precipitation and temperature data were supplied by the Climate Impacts LINK Project (UK Department of the Environment Contract EPG 1/1/16) on behalf of the Climatic Research Unit, University of East Anglia. The boundary conditions were downloaded from the NCEP/NCAR Web server. The National Institutes of Meteorology of Spain and Portugal provided access to daily records of temperature and precipitation at several sites. Other surface and boundary data were provided by the MARS system of the ECMWF. The authors thank the Pennsylvania State University/National Center for Atmospheric Research numerical model home page for making the MM5 model publicly available. Authors made extensive use of the Generic Mapping Tools software [Wessel and Smith, 1991]. GTOPO30 topography data are distributed by the Land Processes Distributed Active Archive Center (LP DAAC), located at the U.S. Geological Survey’s EROS Data Center http://LPDAAC.usgs.gov. We appreciate the comments on the manuscript made by Jimy Dudhia. The comments by three anonymous reviewers have also improved the final version of this manuscript.
Unesco subjects
Keywords
Citation
Adler, R. F., et al. (2003), The version 2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979 – present), J. Hydrometeorol., 4, 1147 – 1167. Beck, A., B. Ahrens, and K. Stadlbacher (2004), Impact of nesting strategies in dynamical downscaling of reanalysis data, Geophys. Res. Lett., 31, L19101, doi:10.1029/2004GL020115. Berg, L. K., and S. Zhong (2005), Sensitivity of MM5-simulated boundary layer characteristics to turbulence parameterizations, J. Appl. Meteorol., 44(9), 1467 – 1483. Boo, K., W. Kwon, J. Oh, and H. Baek (2004), Response of global warming on regional climate change over Korea: An experiment with the MM5 model, Geophys. Res. Lett., 31, L21206, doi:10.1029/2004GL021171. Bright, D. R., and S. L. Mullen (2002), The sensitivity of the numerical simulation of the southwest monsoon boundary layer to the choice of PBL turbulence parameterization in MM5, Weather Forecasting, 17, 99 – 114. Cassano, J. J., T. R. Parish, and J. C. King (2000), Evaluation of turbulent surface flux parameterizations for the stable surface layer over Halley, Antartica, Mon. Weather Rev., 129, 26 – 46. Castro, C. L., R. A. Pielke Sr., and G. Leoncini (2005), Dynamical downscaling: Assessment of value retained and added using the Regional Atmospheric Modeling System (RAMS), J. Geophys. Res., 110, D05108, doi:10.1029/2004JD004721. Castro Díez, Y., D. Pozo Vázquez, F. S. Rodrigo, and M. J. Esteban Parra (2002), NAO and temperature variability in southern Europe, Geophys. Res. Lett., 29(8), 1160, doi:10.1029/2001GL014042. Christensen, J. H., B. Machenhauer, R. G. Jones, C. Schär, P. M. Ruti, M. Castro, and G. Visconti (1997), Validation of present-day regional climate simulations over Europe: LAM simulations with observed boundary conditions, Clim. Dyn., 13, 489 – 506. Cohen, C. (2002), A comparison of cumulus parameterizations in idealized sea-breeze simulations, Mon. Weather Rev., 130, 2554 – 2571. Denis, B., R. Laprise, D. Caya, and J. Côté (2002), Downscaling ability of one-way-nested regional climate models: The Big-Brother experiment, Clim. Dyn., 18, 627 – 646. Denis, B., R. Laprise, and D. Caya (2003), Sensitivity of a regional climate model to the resolution of the lateral boundary conditions, Clim. Dyn., 20(2 – 3), 107 – 126. Dudhia, J. (1989), Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model, J. Atmos. Sci., 46, 3077 – 3107. Dudhia, J. (1996), A multi-layer soil-temperature model for MM5, preprint, Sixth PSU/NCAR Mesoscale Model Users Workshop, Boulder, Colo. Evans, J., R. Oglesby, and W. Lapenta (2005), Time series analysis of regional climate model performance, J. Geophys. Res., 110, D04104, doi:10.1029/2004JD005046. Fernández, J. (2004), Statistical and dynamical downscaling models applied to winter precipitation on the Cantabrian coast, Ph.D. thesis, Univ. del País Vasco, Leioa, Spain. Fernández, J., and J. Sáenz (2003), Improved field reconstruction with the analog method: Searching the CCA space, Clim. Res., 24, 199 – 213. Fernández Mills, G. (1995), Principal component analysis of precipitation and rainfall regionalization in Spain, Theor. Appl. Climatol., 50, 169 – 183. Ferretti, R., T. Paolucci, W. Zheng, G. Visconti, and P. Bonelli (2000), Analyses of the precipitation pattern on the Alpine region using different cumulus convection parameterizations, J. Appl. Meteorol., 39, 182 – 200. Font-Tullot, I. (2000), Climatología de España y Portugal, 2nd ed., Ed. Univ. de Salamanca, Salamanca, Spain. Giorgi, F., and L. O. Mearns (1999), Introduction to special section: Regional climate modeling revisited, J. Geophys. Res., 104(D6), 6335 – 6352. Giorgi, F., and C. Shields (1999), Tests of precipitation parameterizations available in latest version of NCAR regional climate model (REGCM) over continental United States, J. Geophys. Res., 104(D6), 6353 – 6375. González Rouco, J. F., H. Heyen, E. Zorita, and F. Valero (2000), Agreement between observed rainfall trends and climate change simulations in the southwest of Europe, J. Clim., 13, 3057 – 3065. González Rouco, J. F., J. L. Jiménez, V. Quesada, and F. Valero (2001), Quality control and homogeneity of precipitation data in the southwest of Europe, J. Clim., 14, 964 – 978. Goodess, C. M., and J. P. Palutikof (1998), Development of daily rainfall scenarios for southeast Spain using a circulation-type approach to downscaling, Int. J. Climatol., 18(10), 1051 – 1083. Grell, G. A. (1993), Prognostic evaluation of assumptions used by cumulus parameterizations, Mon. Weather Rev., 121, 764 – 787. Grell, G. A., J. Dudhia, and D. R. Stauffer (1994), A description of the fifthgeneration Penn State/NCAR Mesoscale Model (MM5), Tech. Rep. NCAR/TN-398+STR, Natl. Cent. for Atmos. Res., Boulder, Colo. Hewitson, B. C., and R. Crane (1996), Climate downscaling: Techniques and application, Clim. Res., 7, 85 – 95. Hong, S. Y., and H. L. Pan (1996), Nonlocal boundary layer vertical diffusion in a medium-range forecast model, Mon. Weather Rev., 124, 2322 – 2339. Janjić, Z. I. (1994), The step-mountain Eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes, Mon. Weather Rev., 122(5), 927 – 945. Juang, H., and S. Hong (2001), Sensitivity of the NCEP regional spectral model to domain size and nesting strategy, Mon. Weather Rev., 129(12), 2904 – 2922. Kain, J. S., and J. M. Fritsch (1990), A one-dimensional entraining/detraining plume model and its application in convective parameterization, J. Atmos. Sci., 47, 2784 – 2802. Kalnay, E., et al. (1996), The NCEP/NCAR 40-year reanalysis project, Bull. Am. Meteorol. Soc., 77, 437 – 471. Kidson, J. W., and C. S. Thompson (1998), A comparison of statistical and model-based downscaling techniques for estimating local climate variations, J. Clim., 11, 735 – 753. Kotroni, V., and K. Lagouvardos (2001), Precipitation forecast skill of different convective microphysical schemes: Application for the cold season over Greece, Geophys. Res. Lett., 28, 1977 – 1980. Leung, L., and S. Ghan (1999), Pacific northwest climate sensitivity simulated by a regional climate model driven by a GCM. Part I: Control simulations, J. Clim., 12(7), 2010 – 2030. Leung, L., and M. Wigmosta (1999), Potential climate chance impacts on mountain watersheds in the Pacific northwest, J. Am. Water Resour. Assoc., 35(6), 1463 – 1471. Leung, L., S. Zhong, Y. Qian, and Y. Liu (2004), Evaluation of regional climate simulations of the 1998 and 1999 east Asian summer monsoon using the GAME/HUBEX observational data, J. Meteorol. Soc. Jpn., 82(6), 1695 – 1713. Liang, X., L. Li, A. Dai, and K. Kunkel (2004a), Regional climate model simulation of summer precipitation diurnal cycle over the United States, Geophys. Res. Lett., 31, L24208, doi:10.1029/2004GL021054. Liang, X. Z., L. Li, K. E. Kunkel, M. Ting, and J. X. L. Wang (2004b), Regional climate model simulation of U.S. precipitation during 1982 – 2002. Part I: Annual cycle, J. Clim., 17, 3510 – 3529. Lynn, B., L. Druyan, C. Hogrefe, A. Dudhia, C. Rosenzweig, R. Goldberg, D. Rind, R. Healy, J. Rosenthal, and P. Kinney (2004), Sensitivity of present and future surface temperatures to precipitation characteristics, Clim. Res., 28(1), 53 – 65. Millán, M. M., B. Arti nano, L. Alonso, M. Navazo, and M. Castro (1991), The effect of meso-scale flows on regional and long-range atmospheric transport in the western Mediterranean area, Atmos. Environ., Part A, 25, 949 – 963. Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough (1997), Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated model for the longwave, J. Geophys. Res., 102, 16,663 – 16,682. Moberg, A., and P. Jones (2004), Regional climate model simulations of daily maximum and minimum near-surface temperatures across europe compared with observed station data 1961 – 1990, Clim. Dyn., 23(7 – 8), 695 – 715. Murphy, J. (1999), An evaluation of statistical and dynamical techniques for downscaling local climate, J. Clim., 12, 2256 – 2284. New, M., M. Hulme, and P. Jones (1999), Representing twentieth-century space-time climate variability. Part I: Development of a 1961 – 90 mean monthly terrestrial climatology, J. Clim., 12(3), 829 – 856. New, M., M. Hulme, and P. Jones (2000), Representing twentieth-century space-time climate variability. Part II: Development of 1901 – 96 monthly grids of terrestrial surface climate, J. Clim., 13, 2217 – 2238. Noguer, M., R. Jones, and J. Murphy (1998), Sources of systematic errors in the climatology of a regional climate model over Europe, Clim. Dyn., 14(10), 691 – 712. Oh, J., T. Kim, M. Kim, S. Lee, S. Min, and W. Kwon (2004), Regional climate simulation for Korea using dynamic downscaling and statistical adjustment, J. Meteorol. Soc. Jpn., 82(6), 1629 – 1643. Oñate, J. J., and A. Pou (1996), Temperature variations in Spain since 1901: A preliminary analysis, Int. J. Climatol., 16, 805 – 815. Pan, Z., E. Takle, M. Segal, and R. Turner (1996), Influences of model parameterization schemes on the response of rainfall to soil moisture in the central United States, Mon. Weather Rev., 124, 1786 – 1802. Paredes, D., R. M. Trigo, R. García Herrera, and I. F. Trigo (2006), Understanding precipitation changes in Iberia in early spring: Weather typing and storm-tracking approaches, J. Hydrometeorol., 7, 101 – 113. Pielke, R. (2001), Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall, Rev. Geophys., 39(2), 151 – 177. Pozo Vázquez, D., M. J. Esteban Parra, F. S. Rodrigo, and Y. Castro Díez (2001), A study of NAO variability and its possible non-linear influences on European surface temperature, Clim. Dyn., 17, 701 – 715. Reisner, J., R. M. Rasmussen, and R. T. Bruintjes (1998), Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model, Q. J. R. Meteorol. Soc., 124, 1071 – 1107. Rodó, X., E. Baert, and F. A. Comin (1997), Variations in seasonal rainfall in southern Europe during the present century: Relationships with the North Atlantic Oscillation and the El Niño – Southern Oscillation, Clim. Dyn., 13, 275 – 284. Rodríguez Fonseca, B., and E. Serrano (2002), Winter 10-day coupled patterns between geopotential height and Iberian Peninsula rainfall using the ECMWF precipitation reanalysis, J. Clim., 15(11), 1309 – 1321. Rodríguez Puebla, C., A. H. Encinas, S. Nieto, and J. Garmendia (1998), Spatial and temporal patterns of annual precipitation variability over the Iberian Peninsula, Int. J. Climatol., 18, 299 – 316. Rodríguez Puebla, C., A. H. Encinas, and J. Sáenz (2001), Winter precipitation over the Iberian Peninsula and its relationship to circulation indices, Hydrol. Earth Syst. Sci., 5(2), 233 – 244. Romero, R., C. Ramis, and J. A. Guijarro (1999), Daily rainfall patterns in the Spanish Mediterranean area: An objective classification, Int. J. Climatol., 19(1), 95 – 112. Sáenz, J., C. Rodríguez Puebla, J. Fernández, and J. Zubillaga (2001a), Interpretation of interannual winter temperature variations over southwestern Europe, J. Geophys. Res., 106(D18), 20,641 – 20,652. Sáenz, J., J. Zubillaga, and C. Rodríguez Puebla (2001b), Interannual winter temperature variability in the north of the Iberian Peninsula, Clim. Res., 16(3), 169 – 179. Sáenz, J., J. Zubillaga, and C. Rodríguez Puebla (2001c), Interannual variability of winter precipitation in northern Iberian Peninsula, Int. J. Climatol., 21(12), 1503 – 1513. Salvador, R., J. Calbo, and M. Millan (1999), Horizontal grid size selection and its influence on mesoscale model simulations, J. Appl. Meteorol., 38(9), 1311 – 1329. Serrano, A., J. E. García, V. L. Mateos, M. L. Cancillo, and J. Garrido (1999), Monthly modes of variation of precipitation over the Iberian Peninsula, J. Clim., 12, 2894 – 2919. Sumner, G. N., R. Romero, V. Homar, C. Ramis, S. Alonso, and E. Zorita (1995), An estimate of the effects of climate change on the rainfall of Mediterranean Spain by the late twenty first century, Int. J. Climatol., 15, 673 – 696. Trigo, R., and J. Palutikof (1999), Simulation of daily temperatures for climate change scenarios over Portugal: A neural network model approach, Clim. Res., 13(1), 45 – 59. Trigo, R. M., and J. P. Palutikof (2001), Precipitation scenarios over Iberia: A comparison between direct GCM output and different downscaling techniques, J. Clim., 14, 4422 – 4446. Ulbrich, U., M. Christoph, J. G. Pinto, and J. Corte Real (1999), Dependence of winter precipitation over Portugal on NAO and baroclinic wave activity, Int. J. Climatol., 19, 379 – 390. Uppala, S., et al. (2005), The ERA-40 re-analysis, Q. J. R. Meteorol. Soc., 131, 2961 – 3012. Vidale, P. L., D. Lüthi, C. Frei, S. I. Seneviratne, and C. Schär (2003), Predictability and uncertainty in a regional climate model, J. Geophys. Res., 108(D18), 4586, doi:10.1029/2002JD002810. von Storch, H., E. Zorita, and U. Cubasch (1993), Downscaling of global climate change estimates to regional scales: An application to Iberian rainfall in wintertime, J. Clim., 6, 1161 – 1171. Wang, P., and J. Yang (2003), Observation and numerical simulation of cloud physical processes associated with torrential rain of the Meiyu front, Adv. Atmos. Sci., 20(1), 77 – 96. Wang, W., and N. L. Seaman (1997), A comparison study of convective parameterization schemes in a mesoscale model, Mon. Weather Rev., 125, 252 – 278. Wang, Y., L. Leung, J. McGregor, D. Lee, W. Wang, Y. Ding, and F. Kimura (2004), Regional climate modeling: Progress, challenges, and prospects, J. Meteorol. Soc. Jpn., 82(6), 1599 – 1628. Warner, T. T., and H. Hsu (2000), Nested-model simulation of moist convection: The impact of coarse-grid parameterized convection on fine-grid resolved convection, Mon. Weather Rev., 128, 2211 – 2231. Warner, T., R. Peterson, and R. Treadon (1997), A tutorial on lateral boundary conditions as a basic and potentially serious limitation to regional numerical weather prediction, Bull. Am. Meteorol. Soc., 78(11), 2599 – 2617. Wessel, P., and W. H. F. Smith (1991), Free software helps map and display data, Eos Trans. AGU, 72, 441. Wisse, J., and J. Vilá-Guerau (2004), Analysis of the role of the planetary boundary layer schemes during a severe convective storm, Ann. Geophys., 22(6), 1861 – 1874. Worley, S., S. Woodruff, R. Reynolds, S. Lubker, and N. Lott (2005), ICOADS release 2.1 data and products, Int. J. Climatol., 25(7), 823 – 842. Wu, W., A. Lynch, and A. Rivers (2005), Estimating the uncertainty in a regional climate model related to initial and lateral boundary conditions, J. Clim., 18(7), 917 – 933. Xie, P., and P. A. Arkin (1997), Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs., Bull. Am. Meteorol. Soc., 78, 2539 – 2558. Xoplaki, E., J. F. González Rouco, J. Luterbacher, and H. Wanner (2003), Mediterranean summer air temperature variability and its connection to the large-scale atmospheric circulation and SSTs, Clim. Dyn., 20, 723 – 739. Xoplaki, E., J. González Rouco, J. Luterbacher, and H. Wanner (2004), Wet season mediterranean precipitation variability: Influence of large-scale dynamics and trends, Clim. Dyn., 23(1), 63 – 78. Zhang, D., and R. A. Anthes (1982), A high-resolution model of the planetary boundary layer-sensitivity tests and comparisons with SESAME- 79 data, J. Appl. Meteorol., 21, 1594 – 1609. Zhu, J., and X.-Z. Liang (2005), Regional climate model simulation of U.S. soil temperature and moisture during 1982 – 2002, J. Geophys. Res., 110, D24110, doi:10.1029/2005JD006472.
Collections