Publication:
Improving the magnetic heating by disaggregating nanoparticles

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2016-04-05
Authors
Arteaga Cardona, F.
Rojas Rojas, K.
Méndez Rojas, M. A.
Presa Muñoz del Toro, Patricia de la
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Science SA
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Recently, potential applications of the magnetic heating for heterogeneous catalysis or organic synthesis have been reported. As these new applications are not limited by biocompatibility requirements, a wide range of possibilities for non-aqueous colloidal nanoparticles with enhanced magnetic properties is open. In this work, manganese and cobalt ferrite nanoparticles are synthesized by co-precipitation method with average particle size around 12 nm. The particles are either coated with tetramethylammonium hydroxide (TMAOH) and dispersed in water or with oleic acid (OA) and dispersed in hexane to produce aggregated or disaggregated nanoparticles, respectively. It is observed that the particle disaggregation improves significantly the heating efficiency from 12 to 96 W/g in the case of cobalt ferrite, and from 120 to 413 W/g for the manganese ferrite. The main responsible for this improvement is the reduction of hydrodynamic volume that allows a faster Brownian relaxation. This work also discusses the relevance of the size distribution.
Description
© 2016 Elsevier B.V. This work was supported by grants from the Spanish Ministry of Science and Innovation (MAT2012-37109-C02-01), and Fundación Mutua Madrileña (Spain).
Unesco subjects
Keywords
Citation
1. Maier-Hauff, K.; Ulrich, F.; Nestler, D.; Niehoff, H.; Wust, P.; Thiesen, B.; Orawa, H.; Budach, V.; Jordan, A., Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J. Neuro-Oncol. 103 (2011) 317-324. 2. Johannsen, M.; Thiesen, B.; Wust, P.; Jordan, A., Magnetic nanoparticle hyperthermia for prostate cancer. Int. J. Hyperthermia 26 (2010) 790-795. 3. Kolosnjaj-Tabi, J.; Di Corato, R.; Lartigue, L.; Marangon, I.; Guardia, P.; Silva, A. K. A.; Luciani, N.; Clement, O.; Flaud, P.; Singh, J. V.; Decuzzi, P.; Pellegrino, T.; Wilhelm, C.; Gazeau, F., Heat-Generating Iron Oxide Nanocubes: Subtle "Destructurators" of the Tumoral Microenvironment. ACS Nano 8 (2014) 4268-4283. 4. Villanueva, A.; de la Presa, P.; Alonso, J. M.; Rueda, T.; Martinez, A.; Crespo, P.; Morales, M. P.; Gonzalez-Fernandez, M. A.; Valdes, J.; Rivero, G., Hyperthermia HeLa Cell Treatment with Silica-Coated Manganese Oxide Nanoparticles. J. Phys. Chem. C 114 (2010) 1976-1981. 5. Hervault, A.; Thanh, N. n. T. K., Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer. Nanoscale 6 (2014) 11553-11573. 6. Silvio, D.; Rudolf, H., Magnetic particle hyperthermia—a promising tumour therapy? Nanotechnology 25 (2014) 452001. 7. Meffre, A.; Mehdaoui, B.; Connord, V.; Carrey, J.; Fazzini, P. F.; Lachaize, S.; Respaud, M.; Chaudret, B., Complex Nano-objects Displaying Both Magnetic and Catalytic Properties: A Proof of Concept for Magnetically Induced Heterogeneous Catalysis. Nano Letters 15 (2015) 3241-3248. 20 8. Kirschning, A.; Kupracz, L.; Hartwig, J., New Synthetic Opportunities in Miniaturized Flow Reactors with Inductive Heating. Chemistry Letters 41 (2012) 562-570. 9. Andreu, I.; Natividad, E.; Ravagli, C.; Castro, M.; Baldi, G., Heating ability of cobalt ferrite nanoparticles showing dynamic and interaction effects. Rsc Advances 4 (2014) 28968-28977. 10. Torres, T. E.; Roca, A. G.; Morales, M. P.; Ibarra, A.; Marquina, C.; Ibarra, M. R.; Goya, G. F., Magnetic properties and energy absorption of CoFe(2)O(4) nanoparticles for magnetic hyperthermia. International Conference on Magnetism (Icm 2009) 200 (2010) 4. 11. Lacroix, L. M.; Malaki, R. B.; Carrey, J.; Lachaize, S.; Respaud, M.; Goya, G. F.; Chaudret, B., Magnetic hyperthermia in single-domain monodisperse FeCo nanoparticles: Evidences for Stoner-Wohlfarth behavior and large losses. J. Appl. Phys. 105 (2009) 4. 12. Hyeon, T., Chemical synthesis of magnetic nanoparticles. Chemical Communications (2003) 927-934. 13. Blanco-Gutierrez, V.; Virumbrales, M.; Saez-Puche, R.; Torralvo-Fernandez, M. J., Superparamagnetic Behavior of MFe2O4 Nanoparticles and MFe2O4/SiO2 Composites (M: Co, Ni). The Journal of Physical Chemistry C 117 (2013) 20927-20935. 14. de la Presa, P.; Luengo, Y.; Velasco, V.; Morales, M. P.; Iglesias, M.; Veintemillas-Verdaguer, S.; Crespo, P.; Hernando, A., Particle Interactions in Liquid Magnetic Colloids by Zero Field Cooled Measurements: Effects on Heating Efficiency. The Journal of Physical Chemistry C 119 (2015) 11022-11030. 15. Hergt, R.; Dutz, S., Magnetic particle hyperthermia-biophysical limitations of a visionary tumour therapy. Journal of Magnetism and Magnetic Materials 311 (2007) 187-192. 16. de la Presa, P.; Luengo, Y.; Multigner, M.; Costo, R.; Morales, M. P.; Rivero, G.; Hernando, A., Study of Heating Efficiency as a Function of Concentration, Size, and Applied Field in γ-Fe2O3 Nanoparticles. The Journal of Physical Chemistry C 116 (2012) 25602−25610. 17. Salas, G.; Costo, R.; Morales, M. d. P., Chapter 2 - Synthesis of Inorganic Nanoparticles. In Frontiers of Nanoscience, Jesus, M. d. l. F.; Grazu, V., Eds. Elsevier: (2012)Vol. Volume 4, pp 35-79. 18. Gonzalez-Fernandez, M. A.; Torres, T. E.; Andres-Verges, M.; Costo, R.; de la Presa, P.; Serna, C. J.; Morales, M. R.; Marquina, C.; Ibarra, M. R.; Goya, G. F., Magnetic nanoparticles for power absorption: Optimizing size, shape and magnetic properties. Journal of Solid State Chemistry 182 (2009) 2779-2784. 19. Sharifi, I.; Shokrollahi, H.; Amiri, S., Ferrite-based magnetic nanofluids used in hyperthermia applications. Journal of Magnetism and Magnetic Materials 324 (2012) 903-915. 20. Mazario, E.; Sánchez-Marcos, J.; Menéndez, N.; Cañete, M.; Mayoral, A.; Rivera-Fernández, S.; de la Fuente, J. M.; Herrasti, P., High Specific Absorption Rate and Transverse Relaxivity Effects in Manganese Ferrite Nanoparticles Obtained by an Electrochemical Route. The Journal of Physical Chemistry C 119 (2015) 6828-6834. 21. Lemine, O. M.; Omri, K.; Iglesias, M.; Velasco, V.; Crespo, P.; de la Presa, P.; El Mir, L.; Bouzid, H.; Yousif, A.; Al-Hajry, A., γ-Fe2O3 by sol–gel with large nanoparticles size for magnetic hyperthermia application. Journal of Alloys and Compounds 607 (2014) 125-131. 22. Serantes, D.; Baldomir, D.; Martinez-Boubeta, C.; Simeonidis, K.; Angelakeris, M.; Natividad, E.; Castro, M.; Mediano, A.; Chen, D.-X.; Sanchez, A.; Balcells, L.; Martínez, B., Influence of dipolar interactions on hyperthermia properties of ferromagnetic particles. J. Appl. Phys. 108 (2010) 073918. 23. Haase, C.; Nowak, U., Role of dipole-dipole interactions for hyperthermia heating of magnetic nanoparticle ensembles. Physical Review B 85 (2012) 045435. 24. Piñeiro-Redondo, Y.; Bañobre-López, M.; Pardiñas-Blanco, I.; Goya, G.; López-Quintela, M.; Rivas, J., The influence of colloidal parameters on the specific power absorption of PAA-coated magnetite nanoparticles. Nanoscale Res Lett 6 (2011) 1-7. 25. Martinez-Boubeta, C.; Simeonidis, K.; Serantes, D.; Conde-Leborán, I.; Kazakis, I.; Stefanou, G.; Peña, L.; Galceran, R.; Balcells, L.; Monty, C.; Baldomir, D.; Mitrakas, M.; 21 Angelakeris, M., Adjustable Hyperthermia Response of Self-Assembled Ferromagnetic Fe-MgO Core–Shell Nanoparticles by Tuning Dipole–Dipole Interactions. Adv. Funct. Mater. 22 (2012) 3737-3744. 26. Mehdaoui, B.; Meffre, A.; Carrey, J.; Lachaize, S.; Lacroix, L. M.; Gougeon, M.; Chaudret, B.; Respaud, M., Optimal Size of Nanoparticles for Magnetic Hyperthermia: A Combined Theoretical and Experimental Study. Adv. Funct. Mater. 21 (2011) 4573-4581. 27. Mehdaoui, B.; Tan, R. P.; Meffre, A.; Carrey, J.; Lachaize, S.; Chaudret, B.; Respaud, M., Increase of magnetic hyperthermia efficiency due to dipolar interactions in low-anisotropy magnetic nanoparticles: Theoretical and experimental results. Physical Review B 87 (2013) 174419. 28. Pereira, C.; Pereira, A. M.; Fernandes, C.; Rocha, M.; Mendes, R.; Fernández-García, M. P.; Guedes, A.; Tavares, P. B.; Grenèche, J.-M.; Araújo, J. P.; Freire, C., Superparamagnetic MFe2O4 (M = Fe, Co, Mn) Nanoparticles: Tuning the Particle Size and Magnetic Properties through a Novel One-Step Coprecipitation Route. Chemistry of Materials 24 (2012) 1496-1504. 29. Tartaj, P.; Morales, M. d. P.; Veintemillas-Verdaguer, S.; González-Carreño, T.; Serna, C., The preparation of magnetic nanoparticles for applications in biomedicine. Journal of Physics D: Applied Physics 36 (2003) R182. 30. Gyergyek, S.; Drofenik, M.; Makovec, D., Oleic-acid-coated CoFe2O4 nanoparticles synthesized by co-precipitation and hydrothermal synthesis. Materials Chemistry and Physics 133 (2012) 515-522. 31. Auzans, E.; Zins, D.; Blums, E.; Massart, R., Synthesis and properties of Mn-Zn ferrite ferrofluids. Journal of Materials Science 34 (1999) 1253-1260. 32. Natividad, E.; Castro, M.; Mediano, A., Adiabatic vs. non-adiabatic determination of specific absorption rate of ferrofluids. Journal of Magnetism and Magnetic Materials 321 (2009) 1497-1500. 33. Thanh, N. T. K.; Maclean, N.; Mahiddine, S., Mechanisms of Nucleation and Growth of Nanoparticles in Solution. Chemical Reviews 114 (2014) 7610-7630. 34. Chen, J. P.; Sorensen, C. M.; Klabunde, K. J.; Hadjipanayis, G. C.; Devlin, E.; Kostikas, A., Size-dependent magnetic properties of MnFe2O4 fine particles synthesized by coprecipitation. Physical Review B 54 (1996) 9288-9296. 35. Kim, Y. I.; Kim, D.; Lee, C. S., Synthesis and characterization of CoFe2O4 magnetic nanoparticles prepared by temperature-controlled coprecipitation method. Physica B: Condensed Matter 337 (2003) 42-51. 36. Arelaro, A. D.; Lima Jr, E.; Rossi, L. M.; Kiyohara, P. K.; Rechenberg, H. R., Ion dependence of magnetic anisotropy in MFe2O4 (MFe, Co, Mn) nanoparticles synthesized by high-temperature reaction. Journal of Magnetism and Magnetic Materials 320 (2008) e335-e338. 37. Carta, D.; Casula, M. F.; Falqui, A.; Loche, D.; Mountjoy, G.; Sangregorio, C.; Corrias, A., A Structural and Magnetic Investigation of the Inversion Degree in Ferrite Nanocrystals MFe2O4 (M = Mn, Co, Ni). The Journal of Physical Chemistry C 113 (2009) 8606-8615. 38. Smit, J.; Wijn, H. P. J., Ferrites: physical properties of ferrimagnetic oxides in relation to their technical applications; Philips Research Laboratory, Eindhoven, The Netherlands: Philips Research Laboratory, Eindhoven, The Netherlands, 1959. 39. Morales, M. P.; Veintemillas-Verdaguer, S.; Montero, M. I.; Serna, C. J.; Roig, A.; Casas, L.; Martinez, B.; Sandiumenge, F., Surface and internal spin canting in gamma-Fe2O3 nanoparticles. Chemistry of Materials 11 (1999) 3058-3064. 40. Crespo, P.; de la Presa, P.; Marin, P.; Multigner, M.; Alonso, J. M.; Rivero, G.; Yndurain, F.; Gonzalez-Calbet, J. M.; Hernando, A., Magnetism in nanoparticles: tuning properties with coatings. Journal of Physics-Condensed Matter 25 (2013) 21. 41. Hergt, R.; Dutz, S.; Muller, R.; Zeisberger, M., Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. Journal of Physics-Condensed Matter 18 (2006) S2919-S2934. 22 42. Glockl, G.; Hergt, R.; Zeisberger, M.; Dutz, S.; Nagel, S.; Weitschies, W., The effect of field parameters, nanoparticle properties and immobilization on the specific heating power in magnetic particle hyperthermia. Journal of Physics-Condensed Matter 18 (2006) S2935-S2949. 43. Carrey, J.; Mehdaoui, B.; Respaud, M., Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization. J. Appl. Phys. 109 (2011) 083921. 44. Obviously, all particles with smaller SAR values will also contribute to the heating; we just define here a limit for those with the highest heating efficiency. 45. Araújo-Neto, R. P.; Silva-Freitas, E. L.; Carvalho, J. F.; Pontes, T. R. F.; Silva, K. L.; Damasceno, I. H. M.; Egito, E. S. T.; Dantas, A. L.; Morales, M. A.; Carriço, A. S., Monodisperse sodium oleate coated magnetite high susceptibility nanoparticles for hyperthermia applications. Journal of Magnetism and Magnetic Materials 364 (2014) 72-79. 46. Boskovic, M.; Goya, G. F.; Vranjes-Djuric, S.; Jovic, N.; Jancar, B.; Antic, B., Influence of size distribution and field amplitude on specific loss power. J. Appl. Phys. 117 (2015) 103903. 47. Kallumadil, M.; Tada, M.; Nakagawa, T.; Abe, M.; Southern, P.; Pankhurst, Q. A., Suitability of commercial colloids for magnetic hyperthermia. Journal of Magnetism and Magnetic Materials 321 (2009) 1509-1513.
Collections