Publication:
Evaluación de biomateriales 3D basados en Hidroxiapatita/Biosílice en el proceso de regeneración ósea: estudio piloto in vitro-in vivo

Loading...
Thumbnail Image
Official URL
Full text at PDC
Publication Date
2015
Advisors (or tutors)
Civantos Fernández, Ana
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Description
Keywords
Citation
1. Baron R. Anatomy and Ultrastructure of Bone - Histogenesis, Growth and Remodeling. In: De Groot LJ, Beck-Peccoz P, Chrousos G, Dungan K, Grossman A, Hershman JM, et al., editors. Endotext. South Dartmouth (MA): MDText.com, Inc.; 2000. 2. Eriksen E, Vesterby A, Kassem M, Melsen R, Mosekilde L. Bone remodeling and bone structure. In: Mundy G, Martin T, editors. Physiology and Pharmacology of Bone: Berlin Springer-Verlag; 1993. p. 67-109. 3. Robey PG, Fedarko NS, Hefferan TE, Bianco P, Vetter UK, Grzesik W, et al. Structure and molecular regulation of bone matrix proteins. J Bone Miner Res. 1993;8 Suppl 2:S483-7. 4. Robey P. Bone Matrix Proteoglycans and Glycoproteins. In: Bilezikian J, Raisz L, Rodan G, editors. Principles of Bone Biology: Academic Press Publishers; 2002. p. 225-38. 5. Canalis E, Economides AN, Gazzerro E. Bone morphogenetic proteins, their antagonists, and the skeleton. Endocr Rev. 2003;24(2):218-35. 6. Giannobile W, Rios H, Lang P. Bone as a tissue. In: Lindhe J, Lang N, Karring T, editors. Clinical periodontology and implants dentistry. 1. 5th ed. ed: Blackwell Publishing Ltd; 2008. p. 86-98. 7. Gartner L, Hiatt J. Texto atlas de histología. McGraw-Hill, editor2008. 114-36 8. Harada S, Rodan GA. Control of osteoblast function and regulation of bone mass. Nature. 2003;423(6937):349-55. 9. Bonewald LF. The amazing osteocyte. J Bone Miner Res. 2011;26(2):229-38. 10. Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003;423(6937):337-42. 11. Fernandez-Tresguerres-Hernandez-Gil I, Alobera-Gracia MA, del-Canto-Pingarron M, Blanco-Jerez L. Physiological bases of bone regeneration II. The remodeling process. Med Oral Patol Oral Cir Bucal. 2006;11(2):E151-7. 12. Abarrategui A. Estudio del quitosano como material portador de rhBMP-2: Desarrollo, caracterización y aplicabilidad en regeneración de tejido óseo. Madrid: Universidad Complutense de Madrid; 2008. 13. Misch C, Misch-Dietsh F, Singer M, Lyman M. Extraoral Autogenous Donor Bone Grafts for Endosteal Implants: Ilium and Tibia. In: Misch C, editor. Contemporary Implant Dentistry. Mosby Elsevier. 3rd. ed2008. 14. Misch C. Mandibular Donor Block Bone Grafts: symphysis and ramus. In: Misch C, editor. Contemporary Implant Dentistry. Mosby Elsevier. 3rd. edition ed2008. p. 975-1012. 15. Ulery BD, Nair LS, Laurencin CT. Biomedical Applications of Biodegradable Polymers. J Polym Sci B Polym Phys. 2011;49(12):832-64. 16. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27(18):3413-31. 17. Jones JR, Lee PD, Hench LL. Hierarchical porous materials for tissue engineering. Philos Trans A Math Phys Eng Sci. 2006;364(1838):263-81. 18. Hench L. Bioceramics. J Am Ceram Soc. 1998;81(7):1705-28. 19. Bose S, Tarafder S. Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review. Acta Biomater. 2012;8(4):1401-21. 20. Navarro-Toro M. Desarrollo y caracterización de materiales biodegradables para regeneración ósea: Universitat Politècnica de Catalunya 2006. 21. Roy M, Bandyopadhyay A, Bose S. Induction Plasma Sprayed Nano Hydroxyapatite Coatings on Titanium for Orthopaedic and Dental Implants. Surf Coat Technol. 2011;205(8-9):2785-92. 22. Rey C. Calcium phosphate biomaterials and bone mineral. Differences in composition, structures and properties. Biomaterials. 1990;11:13-5. 23. Peniche C, Solís Y, Davidenko N, García R. Materiales compuestos de quitosano e hidroxiapatita. Biotecnologia Aplicada. 2010;27:192-201. 24. Davidenko N, Carrodeguas RG, Peniche C, Solis Y, Cameron RE. Chitosan/apatite composite beads prepared by in situ generation of apatite or Si-apatite nanocrystals. Acta Biomater. 2010;6(2):466-76. 25. Takahashi T, Tominaga T, Watabe N, Yokobori AT, Jr., Sasada H, Yoshimoto T. Use of porous hydroxyapatite graft containing recombinant human bone morphogenetic protein-2 for cervical fusion in a caprine model. J Neurosurg. 1999;90(2 Suppl):224-30. 26. Yoshida K, Bessho K, Fujimura K, Konishi Y, Kusumoto K, Ogawa Y, et al. Enhancement by recombinant human bone morphogenetic protein-2 of bone formation by means of porous hydroxyapatite in mandibular bone defects. J Dent Res. 1999;78(9):1505-10. 27. Xiao W, Fu H, Rahaman MN, Liu Y, Bal BS. Hollow hydroxyapatite microspheres: a novel bioactive and osteoconductive carrier for controlled release of bone morphogenetic protein-2 in bone regeneration. Acta Biomater. 2013;9(9):8374-83. 28. Thompson ID, Hench LL. Mechanical properties of bioactive glasses, glass-ceramics and composites. Proc Inst Mech Eng H. 1998;212(2):127-36. 29. Gerhardt L, Boccaccini A. Bioactive Glass and Glass-Ceramic Scaffolds for Bone Tissue Engineering. Materials. 2010;3:3867-910. 30. Jell G, Notingher I, Tsigkou O, Notingher P, Polak JM, Hench LL, et al. Bioactive glass-induced osteoblast differentiation: a noninvasive spectroscopic study. J Biomed Mater Res A. 2008;86(1):31-40. 31. Day RM. Bioactive glass stimulates the secretion of angiogenic growth factors and angiogenesis in vitro. Tissue Eng. 2005;11(5-6):768-77. 32. Gorustovich AA, Roether JA, Boccaccini AR. Effect of bioactive glasses on angiogenesis: a review of in vitro and in vivo evidences. Tissue Eng Part B Rev. 2010;16(2):199-207. 33. Leu A, Stieger SM, Dayton P, Ferrara KW, Leach JK. Angiogenic response to bioactive glass promotes bone healing in an irradiated calvarial defect. Tissue Eng Part A. 2009;15(4):877-85. 34. Day RM, Maquet V, Boccaccini AR, Jerome R, Forbes A. In vitro and in vivo analysis of macroporous biodegradable poly(D,L-lactide-co-glycolide) scaffolds containing bioactive glass. J Biomed Mater Res A. 2005;75(4):778-87. 35. Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26(27):5474-91. 36. Fu Q, Saiz E, Rahaman MN, Tomsia AP. Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives. Mater Sci Eng C Mater Biol Appl. 2011;31(7):1245-56. 37. Miranda P, Pajares A, Saiz E, Tomsia AP, Guiberteau F. Mechanical properties of calcium phosphate scaffolds fabricated by robocasting. J Biomed Mater Res A. 2008;85(1):218-27. 38. Eqtesadi S, Motealleh A, Miranda P, Pajares A, Lemos A, Ferreira J. Robocasting of 45S5 bioactive glass scaffolds for bone tissue engineering. Journal of the European Ceramic Society. 2014;34:107-18. 39. Russias J, Saiz E, Deville S, Gryn K, Liu G, Nalla RK, et al. Fabrication and in vitro characterization of three-dimensional organic/inorganic scaffolds by robocasting. J Biomed Mater Res A. 2007;83(2):434-45. 40. Michna S, Wu W, Lewis JA. Concentrated hydroxyapatite inks for direct-write assembly of 3-D periodic scaffolds. Biomaterials. 2005;26(28):5632-9. 41. Eqtesadi S, Motealleh A, Pajares A, Miranda P. Effect of milling media on processing and performance of 13-93 bioactive glass scaffolds fabricated by robocasting. Ceramics International. 2015;41(1, Part B):1379-89. 42. Fu Q, Saiz E, Tomsia AP. Bioinspired Strong and Highly Porous Glass Scaffolds. Adv Funct Mater. 2011;21(6):1058-63. 43. Bragdon B, Moseychuk O, Saldanha S, King D, Julian J, Nohe A. Bone morphogenetic proteins: a critical review. Cell Signal. 2011;23(4):609-20. 44. Civantos A. Caracterización físico-química y biológica de filmes de quitosano como trasnportadores de la rhBMP-2 en la regeneración del tejido óseo. Madrid: Universidad Complutense de Madrid; 2014. 45. Lopez-Lacomba JL, Garcia-Cantalejo JM, Sanz Casado JV, Abarrategi A, Correas Magana V, Ramos V. Use of rhBMP-2 activated chitosan films to improve osseointegration. Biomacromolecules. 2006;7(3):792-8. 46. Li XW, Yasuda HY, Umakoshi Y. Bioactive ceramic composites sintered from hydroxyapatite and silica at 1,200 degrees C: preparation, microstructures and in vitro bone-like layer growth. J Mater Sci Mater Med. 2006;17(6):573-81. 47. Santos JD, Jha LJ, Monteiro FJ. In vitro calcium phosphate formation on SiO2-Na2O-CaO-P2O5 glass reinforced hydroxyapatite composite: a study by XPS analysis. Journal of Materials Science: Materials in Medicine. 1996;7(3):181-5. 48. Suominen EA, Aho AJ, Juhanoja J, Yli-Urpo A. Hydroxyapatite-glass composite as a bone substitute in large metaphyseal cavities in rabbits. Int Orthop. 1995;19(3):167-73. 49. Aho AJ, Suominen E, Alanen A, Yli-Urpo A, Knuuti J, Aho HJ. Remodeling of the tibia after grafting of a large cavity with particulate bioactive glass-hydroxylapatite--case report on treatment of fibrous dysplasia with 13 years' follow-up. Acta Orthop Scand. 2003;74(6):766-70. 50. Thoma DS, Kruse A, Ghayor C, Jung RE, Weber FE. Bone augmentation using a synthetic hydroxyapatite/silica oxide-based and a xenogenic hydroxyapatite-based bone substitute materials with and without recombinant human bone morphogenetic protein-2. Clinical Oral Implants Research. 2015;26(5):592-8. 51. Patel ZS, Young S, Tabata Y, Jansen JA, Wong ME, Mikos AG. Dual delivery of an angiogenic and an osteogenic growth factor for bone regeneration in a critical size defect model. Bone. 2008;43(5):931-40. 52. Bae CJ, Kim HW, Koh YH, Kim HE. Hydroxyapatite (HA) bone scaffolds with controlled macrochannel pores. J Mater Sci Mater Med. 2006;17(6):517-21. 53. Wang S, Falk MM, Rashad A, Saad MM, Marques AC, Almeida RM, et al. Evaluation of 3D nano-macro porous bioactive glass scaffold for hard tissue engineering. Journal of Materials Science-Materials in Medicine. 2011;22(5):1195-203. 54. Abarrategi A, Moreno-Vicente C, Martinez-Vazquez FJ, Civantos A, Ramos V, Sanz-Casado JV, et al. Biological properties of solid free form designed ceramic scaffolds with BMP-2: in vitro and in vivo evaluation. PLoS One. 2012;7(3):e34117. 55. Bellucci D, Sola A, Gazzarri M, Chiellini F, Cannillo V. A new hydroxyapatite-based biocomposite for bone replacement. Mater Sci Eng C Mater Biol Appl. 2013;33(3):1091-101. 56. Rodenas-Rochina J, Ribelles JL, Lebourg M. Comparative study of PCL-HAp and PCL-bioglass composite scaffolds for bone tissue engineering. J Mater Sci Mater Med. 2013;24(5):1293-308. 57. Tan F, Naciri M, Al-Rubeai M. Osteoconductivity and growth factor production by MG63 osteoblastic cells on bioglass-coated orthopedic implants. Biotechnol Bioeng. 2011;108(2):454-64. 58. Delgado-Ruiz RA, Calvo-Guirado JL, Romanos GE. Critical size defects for bone regeneration experiments in rabbit calvariae: systematic review and quality evaluation using ARRIVE guidelines. Clin Oral Implants Res. 2015;26(8):915-30. 59. Delgado-Ruiz RA, Calvo Guirado JL, Romanos GE. Bone grafting materials in critical defects in rabbit calvariae. A systematic review and quality evaluation using ARRIVE guidelines. Clin Oral Implants Res. 2015. 60. Simon JL, Michna S, Lewis JA, Rekow ED, Thompson VP, Smay JE, et al. In vivo bone response to 3D periodic hydroxyapatite scaffolds assembled by direct ink writing. J Biomed Mater Res A. 2007;83(3):747-58. 61. Kim HW, Shin SY, Kim HE, Lee YM, Chung CP, Lee HH, et al. Bone formation on the apatite-coated zirconia porous scaffolds within a rabbit calvarial defect. J Biomater Appl. 2008;22(6):485-504. 62. Bae S-Y, Park J-C, Shin H-S, Lee Y-K, Choi S-H, Jung U-W. Tomographic and histometric analysis of autogenous bone block and synthetic hydroxyapatite block grafts without rigid fixation on rabbit calvaria. Journal of Periodontal and Implant Science. 2014;44(5):251-8. 63. Matsumoto MA, Caviquioli G, Biguetti CC, Holgado LdA, Saraiva PP, Rennó ACM, et al. A novel bioactive vitroceramic presents similar biological responses as autogenous bone grafts. Journal Of Materials Science Materials In Medicine. 2012;23(6):1447-56. 64. Penteado LA, Colombo CE, Penteado RA, Assis AO, Gurgel BC. Evaluation of bioactive glass and platelet-rich plasma for bone healing in rabbit calvarial defects. J Oral Sci. 2013;55(3):225-32. 65. Acar AH, Yolcu U, Gul M, Keles A, Erdem NF, Kahraman SA. Micro-computed tomography and histomorphometric analysis of the effects of platelet-rich fibrin on bone regeneration in the rabbit calvarium. Archives of Oral Biology. 2015;60(4):606-14. 66. Moreira-Gonzalez A, Lobocki C, Barakat K, Andrus L, Bradford M, Gilsdorf M, et al. Evaluation of 45S5 bioactive glass combined as a bone substitute in the reconstruction of critical size calvarial defects in rabbits. Journal of Craniofacial Surgery. 2005;16(1):63-70. 67. Ducheyne P, Qiu Q. Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. Biomaterials. 1999;20(23-24):2287-303. 68. Ghanaati S, Barbeck M, Lorenz J, Stuebinger S, Seitz O, Landes C, et al. Synthetic bone substitute material comparable with xenogeneic material for bone tissue regeneration in oral cancer patients: First and preliminary histological, histomorphometrical and clinical results. Ann Maxillofac Surg. 2013;3(2):126-38. 69. Henkel KO, Gerber T, Lenz S, Gundlach KK, Bienengraber V. Macroscopical, histological, and morphometric studies of porous bone-replacement materials in minipigs 8 months after implantation. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;102(5):606-13. 70. Lan Levengood SK, Polak SJ, Poellmann MJ, Hoelzle DJ, Maki AJ, Clark SG, et al. The effect of BMP-2 on micro- and macroscale osteointegration of biphasic calcium phosphate scaffolds with multiscale porosity. Acta Biomater. 2010;6(8):3283-91. 71. Dellinger JG, Eurell JA, Stewart M, Jamison RD. Bone response to 3D periodic hydroxyapatite scaffolds with and without tailored microporosity to deliver bone morphogenetic protein 2. J Biomed Mater Res A. 2006;76(2):366-76.