Publication:
Long-range doublon transfer in a dimer chain induced by topology and ac fields.

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2016-03-02
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Nature publishing group
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The controlled transfer of particles from one site of a spatial lattice to another is essential for many tasks in quantum information processing and quantum communication. In this work we study how to induce long-range transfer between the two ends of a dimer chain, by coupling states that are localized just on the chain's end-points. This has the appealing feature that the transfer occurs only between the end-points - the particle does not pass through the intermediate sites-making the transfer less susceptible to decoherence. We first show how a repulsively bound-pair of fermions, known as a doublon, can be transferred from one end of the chain to the other via topological edge states. We then show how non-topological surface states of the familiar Shockley or Tamm type can be used to produce a similar form of transfer under the action of a periodic driving potential. Finally we show that combining these effects can produce transfer by means of more exotic topological effects, in which the driving field can be used to switch the topological character of the edge states, as measured by the Zak phase. Our results demonstrate how to induce long range transfer of strongly correlated particles by tuning both topology and driving.
Description
© 2016 Macmillan Publishers Limited. All Rights Reserved. We acknowledge F. Hofmann for enlightening discussions. This work was supported by the Spanish Ministry through Grants No. MAT2014-58241-P. and No. FIS2013-41716-P. Author Contributions: M.B. performed the numerical simulations. M.B., C.E.C. and G.P. all contributed to conceptual developments and manuscript preparation. Supplementary information accompanies this paper at http://www.nature.com/srep
Unesco subjects
Keywords
Citation
1. Bose, S. Quantum communication through an unmodulated spin chain. Phys. Rev. Lett. 91, 207901 (2003). 2. Creffield, C. E. Quantum control and entanglement using periodic driving fields. Phys. Rev. Lett. 99, 110501 (2007). 3. Morgan, T. et al. Coherent transport by adiabatic passage on atom chips. Phys. Rev. A. 88, 053618 (2013). 4. Greentree, A. D., Cole, J. H., Hamilton, A. R. & Hollenberg, L. C. Coherent electronic transfer in quantum dot systems using adiabatic passage. Phys. Rev. B. 70, 235317 (2004). 5. Bradly, C. J., Rab, M., Greentree, A. D. & Martin, A. M. Coherent tunneling via adiabatic passage in a three-well Bose-Hubbard system. Phys. Rev. A. 85, 053609 (2012). 6. Gillet, J., Benseny, A. & Busch, T. Spatial Adiabatic Passage for Interacting Particles. arXiv:1505.03982v1 [quant-ph] (2015). 7. Busl, M. et al. Bipolar spin blockade and coherent spin superpositions in a triple quantum dot. Nat. Nanotech. 8, 261–265 (2013). 8. Braakman, F. R., Barthelemy, P., Reichl, C., Wegscheider, W. & Vandersypen, L. M. K. Long-distance coherent coupling in a quantum dot array. Nat. Nanotech. 8, 432–437 (2013). 9. Sánchez, R. et al. Long-range spin transfer in triple quantum dots. Phys. Rev. Lett. 112, 176803 (2014). 10. Aidelsburger, M., Atala, M., Lohse, M., Barreiro, J. T., Paredes, B. & Bloch, I. Realization of the Hofstadter Hamiltonian with Ultracold Atoms in Optical Lattices. Phys. Rev. Lett. 111, 185301 (2013). 11. Miyake, H., Siviloglou, G. A., Kennedy, C. J., Burton, W. C. & Ketterle, W. Realizing the Harper Hamiltonian with Laser-Assisted Tunneling in Optical Lattices. Phys. Rev. Lett. 111, 185302 (2013). 12. Jotzu, G., Messer, M., Desbuquois, R., Lebrat, M., Uehlinger, T., Greif, D. & Esslinger, T. Experimental realization of the topological Haldane model with ultracold fermions. Nature 515, 237–240 (2014). 13. Delplace, P., Gómez-León, A. & Platero, G. Merging of Dirac points and Floquet topological transitions in ac-driven graphene. Phys. Rev. B 88, 245422 (2013). 14. Shu, W. P., Schrieffer, J. R. & Heeger, A. J. Solitons in polyacetylene. Phys. Rev. Lett. 42, 1698 (1979). 15. Zhang, Y. Z. et al. Bond order wave and energy gap in a 1D SSH-Hubbard model of conjugated polymers. Synt. Met. 135–136, 449–450 (2003). 16. Delplace, P., Ullmo, D. & Montambaux, G. Zak phase and the existence of edge states in graphene. Phys. Rev. B. 84, 195452 (2011). 17. Gómez-León, A. & Platero, G. Floquet-Bloch theory and topology in periodically driven lattices. Phys. Rev. Lett. 110, 200405 (2013). 18. Atala, M. et al. Direct measurement of the Zak phase in topological Bloch bands. Nat. Phys. 9, 795–800 (2013). 19. Winkler, K. et al. Repulsively bound atom pairs in an optical lattice. Nature 441, 853–856 (2006). 20. Creffield, C. E. & Platero, G. Localization of two interacting electrons in quantum dot arrays driven by an ac field. Phys. Rev. B. 69, 165312 (2004). 21. Creffield, C. E. & Platero, G. Coherent control of interacting particles using dynamical and Aharonov-Bohm Phases. Phys. Rev. Lett. 105, 086804 (2010). 22. Grossmann, F., Dittrich, T., Jung, P. & Hänggi, P. Coherent destruction of tunneling. Phys. Rev. Lett. 67, 516 (1991). 23. Wall, S. et al. Quantum interference between charge excitation paths in a solid-state Mott insulator. Nat. Phys. 7, 114–118 (2011). 24. Hofmann, F. & Potthoff, M. Doublon dynamics in the extended Fermi-Hubbard model. Phys. Rev. B 85, 205127 (2012). 25. Shockley, W. On the surface states associated with a periodic potential. Phys. Rev. vol. 56 (1939). 26. Beenakker, C. W. J. Search for Majorana Fermions in Superconductors. Annu. Rev. Con. Mat. Phys. 4, 113 (2013). 27. Zak, J. Berry’s phase for energy bands in solids. Phys. Rev. Lett. 62, 2747 (1989). 28. Strohmaier, N. et al. Observation of Elastic Doublon Decay in the Fermi-Hubbard Model. Phys. Rev. Lett. 104, 080401 (2010). 29. Bukov, M., D’Alessio, L. & Plokovnikov, A. Universal high-frequency behavior of periodically driven systems: from dynamical stabilization to Floquet engineering. Adv. in Phys. vol. 64, No. 2, 139–226 (2015). 30. Eckardt, A. & Anisimovas, E. High-frequency approximation for periodically driven quantum systems from a Floquet-space perspective. New J. Phys 17, 093039 (2015). 31. Mikami, T. et al. Brillouin-Wigner theory for high-frequency expansion in periodically driven systems: Application to Floquet topological insulators. arXiv:1511.00755 [cond-mat.mes-hall]. 32. Bukov, M., Kolodrubetz, M. & Polkovnikov, A. The Schrieffer-wolff transformation for periodically-driven systems: Strongly correlated systems with artificial gauge-fields. arXiv:1510.02744 [cond-mat.quant-gas].
Collections