Publication:
Nonequilibrium fluctuation-induced Casimir pressures in liquid mixtures

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2016-03-11
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
In this article we derive expressions for Casimir-like pressures induced by nonequilibrium concentration fluctuations in liquid mixtures. The results are then applied to liquid mixtures in which the concentration gradient results from a temperature gradient through the Soret effect. A comparison is made between the pressures induced by nonequilibrium concentration fluctuations in liquid mixtures and those induced by nonequilibrium temperature fluctuations in one-component fluids. Some suggestions for experimental verification procedures are also presented.
Description
©2016 American Physical Society. The authors acknowledge valuable discussions with Jeremy N. Munday of the University of Maryland. The research at the University of Maryland was supported by the U.S. National Science Foundation under Grant No. DMR-1401449. The research at Universidad Complutense was funded by the Spanish State Secretary of Research under Grant No. FIS2014-58950-C2-2-P.
UCM subjects
Unesco subjects
Keywords
Citation
1. M. Kardar and R. Golestanian, Rev. Mod. Phys. 71, 1233 (1999). 2. M. Krech, The Casimir Effect in Critical Systems (World Scientific, Singapore, 1994). 3. M. Krech, J. Phys. Condens. Matter 11, R391 (1999). 4. J. G. Brankov, D. M. Danchev, and N. S. Tonchev, Theory or Critical Phenomena in Finite-Size Systems (World Scientific, Singapore, 2000). 5. A. Gambassi, C. Hertlein, L. Helden, C. Bechinger, and S. Dietrich, Europhys. News 40, 18 (2009). 6. J. R. Dorfman, T. R. Kirkpatrick, and J. V. Sengers, Annu. Rev. Phys. Chem. 45, 213 (1994). 7. D. Belitz, T. R. Kirkpatrick, and T. Votja, Rev. Mod. Phys. 77, 579 (2005). 8. J. M. Ortiz de Zárate and J. V. Sengers, Hydrodynamic Fluctuations in Fluids and Fluid Mixtures (Elsevier, Amsterdam, 2006). 9. J. V. Sengers, J. M. Ortiz de Zárate, and T. R. Kirkpatrick, in Experimental Thermodynamics. Vol. X. Non-equilibrium Thermodynamics with Applications, edited by D. Bedeaux, S. Kjelstrup, and J. V. Sengers (IUPAC, RSC, Cambridge, MA, 2015), pp. 39–60. 10. T. R. Kirkpatrick, J. M. Ortiz de Zárate, and J. V. Sengers, Phys. Rev. Lett. 110, 235902 (2013). 11. T. R. Kirkpatrick, J. M. Ortiz de Zárate, and J. V. Sengers, Phys. Rev. E 89, 022145 (2014). 12. A. Aminov, Y. Kafri, and M. Kardar, Phys. Rev. Lett. 114, 230602 (2015). 13. T. R. Kirkpatrick, J. M. Ortiz de Zárate, and J. V. Sengers, Phys. Rev. E 93, 012148 (2016). 14. A. Vailati and M. Giglio, Nature 390, 262 (1997). 15. A. Vailati and M. Giglio, Phys. Rev. E 58, 4361 (1998). 16. P. N. Segrè, R. W. Gammon, and J. V. Sengers, Phys. Rev. E 47, 1026 (1993). 17. W. B. Li, P. N. Segrè, R. W. Gammon, and J. V. Sengers, Physica A 204, 399 (1994). 18. A. Vailati and M. Giglio, Phys. Rev. Lett. 77, 1484 (1996). 19. W. B. Li, K. J. Zhang, J. V. Sengers, R. W. Gammon, and J. M. Ortiz de Zárate, J. Chem. Phys. 112, 9139 (2000). 20. A. Giraudet, H. Bataller, Y. Sun, A. Donev, J. M. Ortiz de Zárate, and F. Croccolo, Europhys. Lett. 111, 60013 (2015). 21. T. R. Kirkpatrick, J. M. Ortiz de Zárate, and J. V. Sengers, Phys. Rev. Lett. 115, 035901 (2015). 22. W. W. Wood, J. Stat. Phys. 57, 675 (1989). 23. M. G. Velarde and R. S. Schechter, Phys. Fluids 15, 1707 (1972). 24. M. H. Ernst, E. H. Hauge, and J. M. J. van Leeuwen, J. Stat. Phys. 15, 7 (1976). 25. A. J. Berne and R. Pecora, Dynamic Light Scattering (Wiley, New York, 1976) [Dover, Mineola, NY, 2000]. 26. R. D. Mountain and J. M. Deutch, J. Chem. Phys. 50, 1103 (1969). 27. A. Cohen, J. W. H. Sutherland, and J. M. Deutch, Phys. Chem. Liquids 2, 213 (1971). 28. W. B. Li, Ph.D. thesis, University of Maryland, College Park, 1996. 29. R. S. Schechter, M. G. Velarde, and J. K. Platten, in Advances in Chemical Physics, Vol. 26, edited by I. Prigogine and S. A. Rice (Wiley, New York, 1974), pp. 265–301. 30. J. K. Platten and J. C. Legros, Convection in Liquids (Springer, Berlin, 1984). 31. B. M. Law and J. C. Nieuwoudt, Phys. Rev. A 40, 3880 (1989). 32. J. Foch, Phys. Fluids 14, 893 (1971). 33. J. M. Ortiz de Zárate and J. V. Sengers, in Experimental Thermodynamics. Vol. X. Non-equilibrium Thermodynamics with Applications, edited by D. Bedeaux, S. Kjelstrup, and J. V. Sengers (IUPAC, RSC, Cambridge, MA, 2015), pp. 21–38. 34. J. M. Ortiz de Zárate, T. R. Kirkpatrick, and J. V. Sengers, Eur. Phys. J. E 38, 99 (2015). 35. J. V. Sengers and J. M. Ortiz de Zárate, Rev. Mex. Fís. S 48-1, 14 (2002). 36. J. M. Ortiz de Zárate, F. Peluso, and J. V. Sengers, Eur. Phys. J. E 15, 319 (2004). 37. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Oxford University Press, Oxford, UK, 1961) [ Dover, Mineola, NY, 1981]. 38. J. M. Ortiz de Zárate and L. Muñoz Redondo, Eur. Phys. J. B 21, 135 (2001). 39. G. Bressi, G. Carugno, R. Onofrio, and G. Ruoso, Phys. Rev. Lett. 88, 041804 (2002). 40. P. Antonini, G. Bimonte, G. Bressi, G. Carugno, G. Galeazzi, G. Messino, and G. Ruoso, J. Phys.: Conf. Ser. 161, 012006 (2009). 41. J. Zou, Z. Marcet, A. W. Rodriguez, M. T. H. Reid, A. P. McCauley, I. I. Kravchenko, T. Lu, Y. Bao, S. G. Johnson, and H. B. Chen, Nat. Commun. 4, 1845 (2013). 42. M. E. Fisher, J. Math. Phys. 5, 944 (1964). 43. S. Hartmann, G. Wittko, F. Schock, W. Grosz, F. Lindner, W. Köhler, and K. I. Morozov, J. Chem. Phys. 141, 134503 (2014). 44. T. M. Lechter and B. W. Scoones, J. Chem. Thermodyn. 14, 831 (1982). 45. M. L. L. Paredes, R. A. Reis, A. A. Silva, R. N. G. Santos, M. H. A. Ribeiro, and P. F. Ayres, J. Chem. Thermodyn. 54, 377 (2012). 46. M. Gebhardt, W. Köhler, A. Mialdun, V. Yasnou, and V. Shevtsova, J. Chem. Phys. 138, 114503 (2013). 47. J. M. Ortiz de Zárate, J. A. Fornés, and J. V. Sengers, Phys. Rev. E 74, 046305 (2006). 48. A. Najafi and R. Golestanian, Europhys. Lett. 68, 776 (2004). 49. J. M. Ortiz de Zárate and J. V. Sengers, J. Stat. Phys. 115, 1341 (2004). 50. J. L. Parker, Langmuir 8, 551 (1992). 51. G. L. Klimchitskaya, U. Mohideen, and V. M. Mostepanenko, Rev. Mod. Phys. 81, 1827 (2009). 52. C. Hertlein, L. Helden, A. Gambassi, S. Dietrich, and C. Bechinger, Nature 451, 172 (2008). 53. M. Tröndle, L. Harnau, and S. Dietrich, J. Chem. Phys. 129, 124716 (2008). 54. A. D. Law, L. Harnau, M. Tröndle, and S. Dietrich, J. Chem. Phys. 141, 134704 (2014). 55. R. T. Schermer, C. C. Olson, J. P. Coleman, and F. Bucholtz, Opt. Express 19, 10571 (2011). 56. A. Regazetti, M. Hoyos, and M. Martin, J. Phys. Chem. B 108, 15285 (2004). 57. L. Helden, R. Eichhorn, and C. Bechinger, Soft Matter 11, 2379 (2015). 58. B. N. Zubarev, Nonequilibrium Statistical Thermodynamics (Consultants Bureau, New York, 1974). 59. M. H. Ernst, E. H. Hauge, and J. M. J. van Leeuwen, J. Stat. Phys. 15, 23 (1976). 60. R. Zwanzig, Annu. Rev. Phys. Chem. 16, 67 (1965). 61. T. R. Kirkpatrick, E. G. D. Cohen, and J. R. Dorfman, Phys. Rev. A 26, 950 (1982). 62. T. R. Kirkpatrick, E. G. D. Cohen, and J. R. Dorfman, Phys. Rev. A 26, 972 (1982). 63. T. R. Kirkpatrick, E. G. D. Cohen, and J. R. Dorfman, Phys. Rev. A 26, 995 (1982). 64. M. H. Ernst, E. H. Hauge, and J. M. J. van Leeuwen, Phys. Rev. A 4, 2055 (1971).
Collections