Publication:
The Teleconnection of the Tropical Atlantic to Indo-Pacific Sea Surface Temperatures on Inter-Annual to Centennial Time Scales: A Review of Recent Findings

Research Projects
Organizational Units
Journal Issue
Abstract
In this paper, the teleconnections from the tropical Atlantic to the Indo-Pacific region from inter-annual to centennial time scales will be reviewed. Identified teleconnections and hypotheses on mechanisms at work are reviewed and further explored in a century-long pacemaker coupled ocean-atmosphere simulation ensemble. There is a substantial impact of the tropical Atlantic on the Pacific region at inter-annual time scales. An Atlantic Nino (Nina) event leads to rising (sinking) motion in the Atlantic region, which is compensated by sinking (rising) motion in the central-western Pacific. The sinking (rising) motion in the central-western Pacific induces easterly (westerly) surface wind anomalies just to the west, which alter the thermocline. These perturbations propagate eastward as upwelling (downwelling) Kelvin-waves, where they increase the probability for a La Nina (El Nino) event. Moreover, tropical North Atlantic sea surface temperature anomalies are also able to lead La Nina/El Nino development. At multidecadal time scales, a positive (negative) Atlantic Multidecadal Oscillation leads to a cooling (warming) of the eastern Pacific and a warming (cooling) of the western Pacific and Indian Ocean regions. The physical mechanism for this impact is similar to that at inter-annual time scales. At centennial time scales, the Atlantic warming induces a substantial reduction of the eastern Pacific warming even under CO_2 increase and to a strong subsurface cooling.
Description
c 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/). © 2016 MDPI AG. We thank the two anonymous reviewers for their constructive comments that helped to improve the manuscript. Author Contributions: The analysis of observations and the model data have been performed by Fred Kucharski and Afroja Parvin. Belen Rodriguez-Fonseca, Marta Martin-Rey, Irene Polo, Elsa Mohino, Teresa Losada, Carlos-Roberto Mechoso and Riccardo Farneti contributed equally to the discussion of the relevant literature in this review and helped to improve the manuscript.
Keywords
Citation
1. Ropelewski, C.P.; Halpert, M.S. Global and regional scale precipitation associated with the El Niño/Southern Oscillation. Mon. Weather Rev. 1987, 115, 1606–1626. 2. Duan, W.; Wei, C. The “sping predictability barrier” for ENSO predictions and its possible mechanism: results from a fully coupled model. Int. J Clim. 2012, 33, 1280–1292. 3. Chen, D.; Cane, M.A.; Kaplan, A.; Zebiak, Z.E.; Huang, D. Predictability of El Niño over the past 148 years. Nature 2004, 428, 733–736. 4. Rodriguez-Fonseca, B.; Polo, I.; Garcia-Serrano, J.; Losada, T.; Mohino, E.; Mechoso, C.R.; Kucharski, F. Are Atlantic Niños enhancing Pacific ENSO events in recent decades? Geophys. Res. Lett. 2009, 36, L20705. 5. Wang, C.; Kucharski, F.; Barimalala, R.; Bracco, A. Teleconnections of the tropical Atlantic to the tropical Indian and Pacific Oceans: A review of recent findings. Meteorol. Z. 2009, 18, 445–454. 6. Ding, H.; Keenlyside, N.S.; Latif, M. Impact of the Equatorial Atlantic on the El Niño Southern Oscillation. Clim. Dyn. 2012, 38, 1965–1972. 7. Frauen, C.; Dommenget, D. Influences of the tropical Indian and Atlantic Oceans on the predictability of ENSO. Geophys. Res. Lett. 2012, 39, L02706. 8. Jansen, M.F.; Dommenget, D.; Keenlyside, N.S. Tropical Atmosphere-Ocean Interactions in a Conceptual Framework. J. Clim. 2009, 22, 550–567. 9. Polo, I.; Martin-Rey, M.; Rodriguez-Fonseca, B.; Kucharski, F.; Mechoso, C.R. Processes in the Pacific La Niña onset triggered by the Atlantic Niño. Clim. Dyn. 2014, 44, 115–131. 10. Martin-Rey M.; Polo, I.; Rodriguez-Fonseca, B.; Kucharski, F. Changes in the inter-annual variability of the tropical Pacific as a response to an equatorial Atlantic forcing. Sci. Mar. 2012, 76, doi:10.3989/scimar.03610.19A. 11. Martin-Rey, M.; Rodriguez-Fonseca, B.; Polo, I.; Kucharski, F. On the Atlantic-Pacific Niños connection: A multidecadal modulated mode. Clim. Dyn. 2014, 43, doi:10.1007/s00382-014-2305-3. 12. Martin-Rey, M.; Rodriguez-Fonseca, B.; Polo, I. Atlantic opportunities for ENSO prediction. Geophys. Res. Lett. 2015, 42, 6802–6810. 13. Keenlyside, N.S.; Ding, H.; Latif, M. Potential of equatorial Atlantic variability to enhance El Niño prediction. Geophys. Res. Lett. 2013, 40, 2278–2283. 14. Ham, Y.-Y.; Kug, J.-S.;Park, J. Y.; Jin, F.-F. Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern Oscillation events. Nat. Geosci. 2013, 6, doi:10.1038/NGEO1686. 15. Ham, Y.-Y., Kug, J.-S.; Park, J. Y.; Jin, F-F. Two distinct roles of Atlantic SSTs in ENSO variability: North tropical Atlantic SST and Atlantic Niño. Geophys. Res. Lett. 2013, 40, 4012–4017. 16. Kucharski, F.; Syed, F.S.; Burhan, A.; Farah, I.; Gohar A. Tropical Atlantic influence on Pacific variability and mean state in the twentieth century in observations and CMIP5. Clim. Dyn. 2014, 44, doi:10.1007/s00382-014-2228-z. 17. Sasaki, W.; Doi, T.; Richards, K.J.; Masumoto, Y. Impact of the equatorial Atlantic sea surface temperature on the tropical Pacific in a CGCM. Clim. Dyn. 2014, 43, 2539–2552. 18. Dong, B.W.; Sutton, R.T. Enhancement of El Niño-Southern Oscillation (ENSO) variability by a weakened Atlantic thermohaline circulation in a coupled GCM. J. Cliamte 2007, 20, 4920-4939. 19. Lu, R.; Chen, W.; Dong, B. How does a weakened Atlantic thermohaline circulation lead to an intensification of the ENSO-south Asian summer monsoon interaction? Geophys. Res. Lett. 2008, 35, L08706. 20. Timmermann, A.; Okumura, Y.; An, S.-I.; Clement, A.; Dong, B.; Guilyardi, E.; Hu, A.; Jungclaus, J.H.; Renold, M.; Stocker, T.F.; et al. The influence of aweakening of the Atlantic Meridional overturning circulation on ENSO. J. Clim. 2007, 20, 4899–4919. 21. Zhang, R.; Delworth, T.L. Impact of the Atlantic multidecadal oscillation on north pacific climate variability. Geophys. Res. Lett. 2007, 34, L23708. 22. Kucharski, F.; Ikram, F.; Molteni, F.; Farneti, F.; Kang, I.-S.; No, H.H.; King, M.P.; Giuliani, G.; Mogensen, K. Atlantic forcing of Pacific decadal variability. Clim. Dyn. 2015, doi:10.1007/s00382-015-2705-z. 23. Meehl, G.A.; Hu, A.; Santer, B.D. The mid-1970s climate shift in the Pacific and the relative roles of forced versus inherent decadal variability. J. Clim. 2009 22, 780–792. 24. Graham, N.E. Decadal-scale climate variability in the tropical and North Pacific during the 1970s and 1980s: Observations and model results. Clim. Dyn 1994, 10, 135–162. 25. Dong. B.; Lu, R. Interdecadal Enhancement of theWalker Circulation over the Tropical Pacific in the Late 1990s. Adv. Atmos. Sci. 2013, 30, 247–262. 26. Miller, A.J.; Cayan, D.R.; Barnett, T.P.; Graham, N.E.; Oberhuber, J.M. Interdecadal variability of the Pacific Ocean: model response to observed heat fluxes and wind stress anomalies. Clim. Dyn. 1994, 9, 187–302. 27. England, M.H.; McGregor, S.; Spence, P.; Meehl, G.A.; Timmermann, A.; Cai,W.; Gupta, A.S.; McPhaden, M.J.; Purich, A.; Santoso, A. Recent intensification of wind- driven circulation in the Pacific and the ongoing warming hiatus. Nat. Clim. Change 2014, 4, 222–227. 28. Kosaka, Y.; Xie, S.-P. Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 2013, 501, 403–407. 29. Trenberth, K.E.; Fasullo, J.T. An apparent hiatus in global warming? Earth’s Future 2013, 1, 19-32. 30. Kang, I.-S.; No, H.-H.; Kucharski, F. ENSO Amplitude Modulation Associated with the Mean SST Changes in the Tropical Central Pacific Induced by Atlantic Multidecadal Oscillation. J. Clim. 2014, 27, 7911–7920. 31. McGregor, S.; Timmermann, A.; Stuecker, M. F.; England, M. H.; Merrifield, M.; Jin, F.-F.; Chikamoto, Y. Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat. Clim. Change 2014, 4, doi:10.1038/NCLIMATE2330. 32. Li, X.; Xie, S.-P.; Gille, S.T.; Yoo, C. Atlantic-induced pan-tropical climate change over the last three decades. Nat. Clim. Change 2015, doi:10.1038/NCLIMATE2840. 33. Chikamoto, Y.; Kimoto, M.; Watanabe, M.; Ishii, M.; Mochizuki, T. Relationship between the Pacific and Atlantic stepwise climate change during the 1990s. Geophys. Res. Lett. 2012, 39, doi:10.1029/2012GL053901. 34. Chikamoto, Y.;Timmermann, A.; Luo, J.-J.; Mochizuki, T.; Kimoto, M.; Watanabe, M.; Ishii, M.; Xie, S.-P.; Jin, F.-F. Skilful multi-year predictions of tropical trans-basin climate variability. Nat. Commun. 2015, 6, doi:10.1038/ncomms7869. 35. Farneti, R.; Molteni, F.; Kucharski, F. Pacific interdecadal variability driven by tropical-extratropical interactions. Clim. Dyn. 2014, 42, 3337–3355. 36. Farneti, R.; Dwivedi, S.; Kucharski; Molteni, F.; Griffies, S.M. On Pacific Subtropical Cell Variability over the Second Half of the Twentieth Century. J. Clim. 2014, 27, 7102–7112. 37. Kucharski, F.; Kang, I.-S.; Farneti, R.; Feudale, L. Tropical Pacific response to 20th century Atlantic warming. Geophys. Res. Lett. 2011, 38, L03702. 38. Vecchi, G.A.; Clement, A.; Soden, B.J. Examining the tropical Pacific’s response to global warming. EOS Trans. AGU 2008, 89, doi:10.1029/2008EO0900002. 39. Rayner, N.A.; Parker, D.E.; Horton, E.B.; Folland, C.K.; Alexander, L.V.; Rowell, D.P.; Kent, E.C.; Kaplan, A. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 2003, 108, doi:10.1029/2002JD002670. 40. Compo G.P.; Whitaker, J.S.; Sardeshmukh, P.D.; Matsui, N.; Allan, R.J.; Yin, X.; Gleason, B.E.; Vose, R.S.; Rutledge, G.; Bessemoulin, P.; et al. The 20th century reanalysis project. Q. J. R. Meteorol. Soc. 2011, 137, 1–28. 41. Carton, J.A.; Giese, B. A Reanalysis of Ocean Climate Using Simple Ocean Data Assimilation (SODA). Mon. Weather Rev. 2008 136, 2999–3017. 42. SODA: Simple Ocean Data Assimilation. Available online: https://climatedataguide.ucar.edu/climate-data/ soda-simple-ocean-data-assimilation (accessed on 7 November 2014). 43. Kucharski, F.; Molteni, F.; King, M.P.; Farneti, R.; Kang, I.S.; Feudale, L. On the need of intermediate complexity general circulation models. BAMS 2013, 94, 25–30. 44. Madec, G. NEMO Ocean Engine. Note du Pole de modalisation, Institut Pierre-Simon Laplace (IPSL): Paris, France, 2008; Volume 27, ISSN No 1288–1619. 45. Valcke, S. OASIS3 User Guide (prism_2-5); CERFACS Technical Report 2006 TR/CMGC/06/73, PRISM Report No 3; CERFACS: Toulouse, France, 2006; p. 60. 46. Fichefet, T.; Morales Maqueda, M.A. Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J. Geophys. Res. 1997, 102, 12609–12646. 47. Kroeger, J.; Kucharski, F. Sensitivity of ENSO characteristics to a new interactive flux correction scheme in a coupled GCM. Clim. Dyn. 2011, 36,119–137. 48. Losada, T.; Rodriguez-Fonseca, B.; Polo, I; Janicot, S.; Gervois, S.; Chauvin, F.; Ruti, P.M. Tropical response to the Atlantic Equatorial mode: AGCM multimodel approach. Clim. Dyn. 2010, 35, 45–52. 49. Ruiz-Barradas, A.; Carton, J.A.; Nigam, S. Structure of inter-annual- to-decadal climate variability in the tropical Atlantic sector. J. Clim. 2000, 13, 3285–3297. 50. Losada T.; Rodriguez-Fonseca, B. Tropical Atmospheric Response to Decadal Changes in the Atlantic Equatorial Mode. Clim. Dyn. 2015, doi:10.1007/s00382-015-2897-2 51. Chiang, J.C.H.; Kushnir, Y.; Zebiak, S.E. Interdecadal changes in the eastern Pacific ITCZ variability and its influence on the Atlantic ITCZ. Geophys. Res. Lett. 2000, 27, 3687–3690. 52. Parker, D.; Folland, C.; Scaife, A.; Knight, J.; Colman, A.; Baines, P.; Dong, B. Decadal to multidecadal variability and the climate change background. J. Geophys. Res. 2007, 112, doi:10.1029/2007JD008411. 53. Trenberth, K.; Shea, D.J. Atlantic hurricanes and natural variability in 2005. Geophys. Res. Lett. 2005 33, doi:10.1029/2006GL026894. 54. Yang, C.; Giese, B.S.; Wu, L. Ocean Dynamics and Tropical Pacific Climate Change in Ocean Reanalyses and Coupled Climate Models. J. Geophys. Res. Oceans 2014, 119, doi:10.1002/2014JC009979. 55. Mohino, E.; Rodriguez-Fonseca, B.; Losada, T.; Gervois S.; Janicot, S.; Bader, J. Changes in the inter-annual SST-forced signals onWest African rainfall. AGCM intercomparison. Clim. Dyn. 2011, 37, 1707–1725. 56. Rodriguez-Fonseca, B.; Janicot, S.; Mohino, E.; Losada, T.; Bader, J. Interannual and decadal SST-forced responses of the West African monsoon. Atmos. Sci. Lett. 2010, 12, 67–74. 57. Torralba, V.; Rodriguez-Fonseca, B.; Mohino, E.; Losada, T. The non-stationary influence of the Atlantic and Pacific Niños on North Eastern South American rainfall. Front. Earth Sci. 2015, 3, doi:10.3389/feart.2015.00055. 58. Losada, T.; Rodriguez-Fonseca, B.; Kucharski, F. Tropical influence on the summer Mediterranean climate. Atmos. Sci. Lett. 2012, 13, 36–42. 59. Richter, I; Xie, S.-P.; Behera, S.K.; Doi, T.; Masumoto, Y. Equatorial Atlantic variability and its relation to mean state biases in CMIP5. Clim. Dyn. 2014, 42, 171–188. 60. Mechoso, C.R.; Robertson, A.W.; Barth, N.; Davey, M.K.; Delecluse, P.; Gent, P.R.; Ineson, S.; Kirtman, B.; Latif, M.; le Treut, H.; et al. The seasonal cycle over the Tropical Pacific in General Circulation Models. Mon. Weather Rev. 1995, 123, 2825–2838. 61. Guilyardi, E.; Bellenger, H.; Collins, M.; Ferrett, S.; Cai,W.;Wittenberg, A. A first look at ENSO in CMIP5. Clivar Exch. 2012, 17, 29–32.
Collections