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Spin glasses are a longstanding model for the sluggish dynamics that appears at the glass tran-
sition. However, spin glasses differ from structural glasses for a crucial feature: they enjoy a time
reversal symmetry. This symmetry can be broken by applying an external magnetic field, but em-
barrassingly little is known about the critical behaviour of a spin glass in a field. In this context,
the space dimension is crucial. Simulations are easier to interpret in a large number of dimensions,
but one must work below the upper critical dimension (i.e., in d < 6) in order for results to have
relevance for experiments. Here we show conclusive evidence for the presence of a phase transition
in a four-dimensional spin glass in a field. Two ingredients were crucial for this achievement: mas-
sive numerical simulations were carried out on the Janus special-purpose computer, and a new and
powerful finite-size scaling method.

The glass transition differs from standard phase transi-
tions in that the equilibration time of glass formers (su-
percooled liquids, polymers, proteins, superconductors,
etc.) diverges without dramatic changes in their struc-
tural properties [1–3]. The reconciliation of the dynamic
slowdown with the apparent immutability of glass form-
ers is a major challenge for condensed matter physics.

Spin glasses (which are disordered magnetic alloys [4])
enjoy a privileged status in this context, as they pro-
vide the simplest model system both for theoretical and
experimental studies of a glassy dynamics. On the ex-
perimental side, time-dependent magnetic fields provide
a wonderful tool to probe the dynamic response, which
can be accurately measured with a SQUID (for instance,
see [5]). On the theoretical side, magnetic systems are
notably easier to model and to simulate numerically. In
fact, special-purpose computers have been built for the
simulation of spin glasses [6–9].

Yet, spin glasses differ from most glassy systems in
a crucial feature: like all magnetic systems, they enjoy
time-reversal symmetry in the absence of an applied mag-
netic field. In fact, we now know that their glassy dy-
namics is due to a bona fide phase transition in which
the time-reversal symmetry is spontaneously broken [10–
12]. Yet, in the presence of an applied magnetic field,
the experimental spin-glass dynamics is just as glassy,
although the field explicitly breaks the symmetry.

However, whether spin glasses in a magnetic field un-
dergo a phase transition has been a long-debated and still
open question (see [13, 14] for recent, opposed views). In

the mean-field approximation, which is valid for large
spatial dimension down to the upper critical dimension
du = 6 [15], the de Almeida-Thouless line [16] sepa-
rates the high-temperature paramagnetic phase from the
glassy phase [17]. Yet, recent numerical simulations in
spatial dimensions below du did not find the transition
in a field [18, 19]. Experimental studies have been con-
ducted as well, with conflicting conclusions [20–23]. In
spite of this, it has been argued that the would-be spin-
glass transition in a magnetic field sets the universality
class for the thermodynamic glass transition [24].

Here, we present conclusive evidence for a spin-glass
transition in the presence of an external magnetic field
in the four-dimensional Edwards-Andersonmodel (hence,
well below du). This result was obtained by means of a
large-scale numerical simulation, partly carried out on
the Janus computer [8]. Due to some pathologies of the
spin-glass correlation function [25], our analysis method
departs from the standard one. We compute critical ex-
ponents, widely differing from the zero field case, with
an accuracy of five percent. The failure of previous work
to identify the transition is explained in terms of very
strong corrections to scaling.

I. RESULTS

We consider the Edwards-Anderson model with Ising
spins (Sx = ±1) sitting on the nodes of a D = 4 cubic
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FIG. 1. Plot of the second moment correlation length ξ2 —
eq. (B4)— against temperature in an external field h = 0.3.
There is a clear crossover from the convergence to a finite
envelope at high T to the more rapid growth at low T . As
this paper shows, this is caused by the onset of a spin-glass
transition. The dotted black line is a fit to a critical diver-
gence as ξ∞2 ∝ [T − Tc(h)]

−ν , where Tc and ν are taken
from Table I. The inset is a sketch of the phase diagram
(the de Almeida-Thouless line), including a fit to the Fisher-

Sompolinsky scaling h2
c(T ) ≃ A|T − T

(0)
c |β

(0)+γ(0)

[26]. The
quantities with a superindex (0) are the values for the h = 0
critical point, [27, 28] so the only free parameter is the am-
plitude A.

lattice of size V = LD. Our Hamiltonian is

H = −
∑

〈x,y〉

JxySxSy − h
∑

x

Sx, (1)

where 〈x,y〉 indicates that the sum is taken over all
nearest-neighbour pairs and each Jxy is ±1 with 50%
probability. We provide details about our numerical sim-
ulations in Appendix A.
As stated in the introduction, we want to investigate

whether this system experiences a second-order phase
transition in the presence of a non-zero magnetic field h.
This is typically checked through the study of some cor-
relation length ξ, which is a good marker of the scale in-
variance commonly associated to continuous transitions.
To this end, we begin by defining the spatial auto-

correlation function G(r). This can actually be done in
several ways in the presence of a magnetic field (see Ap-
pendix B for details). Then, ξ is just the characteristic
length for the long-distance decay of G(r). In order to
arrive at an appropriate definition for finite lattice sys-
tems, one typically considers the propagator in Fourier
space, Ĝ(k), and defines the second-moment correlation
length ξ2 from a truncated Ornstein-Zernike expansion
—eqs. (B3) and (B4).
We have plotted ξ2 in Figure 1 for all our lattice sizes

and h = 0.3. There is a clear change of regime from the
high-temperature behaviour, where we can see a finite en-
veloping curve, to the growth of the correlation length at
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FIG. 2. Top: plot of ξ2/L as a function of temperature for
all our lattice sizes at h = 0.15. According to leading-order
finite-size scaling, the curves for different sizes should intersect
at the phase transition point, but this behaviour is not seen
in the plot. This apparent lack of scale invariance has led
some authors to conclude that there is no phase transition
in this system. Bottom: Same plot of the dimensionless ratio
R12, eq. (3), which should have the same leading-order scaling
as ξ2/L. Unlike the correlation length, however, R12 does
exhibit very clear intersections, signalling the presence of a
second-order phase transition. The dramatic improvement
in the scaling, compared to the top panel, is explained by
the pernicious effect on ξ2 of the anomalous behaviour in the
correlation function for zero momentum.

low temperatures. We intend to show that this change of
regime actually corresponds to a phase transition, using
finite-size scaling [29].
In principle, at the transition point there should be

scale invariance in the system, meaning that

ξ2/L = fξ
(

L1/νt
)

+ . . . , t =
T − Tc(h)

Tc(h)
(2)

where ν is the thermal critical exponent and the dots
represent corrections to leading scaling, expected to be
unimportant for large lattice sizes. Therefore, the curves
of ξ2/L for large lattices should intersect at the critical
point t = 0. Previous attempts to find Tc using this
approach, however, have generally concluded that these
intersections cannot be found (or, rather, that the appar-
ent intersection point goes to T = 0 as L grows) [18, 19].
Indeed, if we look at the top panel of Figure 2, we see
that either there is no phase transition or ξ2 is completely
in a preasymptotic regime.
Some authors, working with D = 1 models with long-

range interactions, have already offered an explanation
for this apparent lack of scale invariance: the propaga-
tor behaves anomalously, but only for the k = 0 mode
[25]. This results in very strong corrections to the leading
scaling term of eq. (2), since the second-moment corre-

lation length depends on Ĝ(k = 0). We have checked
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numerically that this phenomenon is also at play in our
D = 4 system, which is probably a general consequence
of the presence of Goldstone bosons in the system (see
Appendix B for a discussion of this phenomenon).
In order to avoid this issue, in this paper we take a

novel approach, eschewing ξ2/L in favour of a new di-
mensionless ratio as the basic quantity for our finite-size
scaling study. In particular, we shall consider ratios of
higher momenta:

R12 =
Ĝ(k1)

Ĝ(k2)
, (3)

where k1 = (2π/L, 0, 0, 0), k2 = (2π/L, 2π/L, 0, 0) (and
permutations) are the smallest non-zero momenta com-
patible with the periodic boundary conditions. Notice
that, while our use of R12 as a basic parameter is novel,
this is not in any way a strange quantity. In fact, it is
a universal renormalisation-group invariant, whose value
in the large-L limit for a paramagnetic system should
be R12(T > Tc) = 1. At the critical point, how-
ever, R12(Tc) > 1. For instance, using conformal the-
ory relations [30, 31], we have computed the critical ra-
tio exactly for the non-disordered D = 2 Ising model:

RIsing
12 (Tc) = 1.694 024 . . .
To leading order, R12 should have the same scaling

behaviour as ξ2/L, namely,

R12 = f12
(

L1/νt
)

+ [scaling corrections]. (4)

However, since this quantity avoids the anomalous k = 0
mode, we expect that corrections to scaling be smaller.
Indeed, in the bottom panel of Figure 2 we can see that
the improvement in the scaling from the ξ2 case is dra-
matic. Even though corrections to scaling are noticeable,
for large sizes the intersections of the curves seem to con-
verge. Notice as well that the high values of R12 in the
neighbourhood of the intersection point are not only far
from the paramagnetic limit of R12 = 1, but also above
the bound R12 ≤ 2 that would result from a smooth be-
haviour of the propagator (see the discussion following
eq. (B3)).
Therefore, it is our working hypothesis that there is a

phase transition, but one that is affected by large cor-
rections to scaling. To substantiate this statement and
actually compute the critical parameters, we must begin
by somehow controlling these corrections. This analysis
is rather technical, but not critical to our discussion, so
we leave it for Appendix C, where we study the behaviour
of ξ2/L at fixed R12 as a function of L. To leading order,
this should be a constant, so it has allowed us to isolate
the effect of the scaling corrections, parameterised as an
extra term in L−ω in (2) and (4), where

ω = 1.43(37). (5)

Now that we have the scaling corrections exponent
ω, we can go back to study R12. The easiest way to
compute the critical parameters (Tc, ν, etc.) from a
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FIG. 3. Computation of the critical temperature Tc(h) and
the critical exponent ν. We compute the temperature TL

R (h)
for which R12(T

L
R , L, h) = R. For R inside the scaling region,

these temperatures should approach the critical one according
to (8). We perform a joint fit for all the data sets in the plot,
forcing all of them to share the same ν and forcing all sets
with the same h to extrapolate to the same Tc(h). The result
of this fit, which had a chi-square per degree of freedom of
χ2/d.o.f. = 40.2/37 (P -value: 33%), can be seen in Table I.

renormalisation-group invariant such as R12 is the quo-
tients method [32]. Unfortunately, in our case the cor-
rections to scaling are strong, and for some lattice sizes
we do not actually reach the intersection point. Let us,
therefore, consider an alternative procedure [33].
We assume (and therefore will test) that all points of

the de Almeida-Thouless line (h > 0) belong to the same
universality class. We begin by considering eq. (4) and
explicitely write the corrections to scaling, recall that
t = (T − Tc(h))/Tc(h),

R12

(

T, L, h
)

= f12(tL
1/ν) +A(h, tL1/ν)L−ω + . . . (6)

Now we define TL
R (h) as

R12

(

TL
R (h), L, h

)

= R. (7)

Therefore, if R is in the scaling region, i.e., not too far
from f12(0), then

TL
R (h) ≃ Tc(h) +BR,hL

−1/ν[1 + CR,hL
−ω]. (8)

Using this formula, keeping ω fixed to the value of (5), we
can, in principle, estimate the critical exponent ν and the
critical temperature Tc(h). However, for a single value of
R we do not have enough degrees of freedom in the fit.
Therefore, following [34], we consider several values of R
and two values of the field, h = 0.15 and h = 0.30 at the
same time in a joint fit, where ν is shared by all data sets
and Tc(h) is shared by all the data sets with the same h
(see [35] for full details on this fitting procedure). This is
plotted in Figure 3, while the fit parameters can be seen
in Table I. We also include the critical temperature for
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Parameter h = 0.3 h = 0.15 h = 0.075

Tc(h) 0.906(40)[3] 1.229(30)[2] 1.50(7)

ν 1.46(7)[6] —

η −0.30(4)[1] —

TABLE I. Critical temperatures and exponents for our model.
The second error bar, in square brackets, refers to the effect
of the uncertainty in ω. In order to compute ν and Tc(h) we
studied the scaling of R12 with a joint fit for h = 0.15 and
h = 0.3, as depicted in Figure 3. The value of η was computed
from the scaling of Ĝ(k) at h = 0.15 and h = 0.3. The data
for h = 0.075 presented severe corrections, probably due to
the proximity of the h = 0 critical point. Therefore, we did
not include this field in the previous fits and only used the
data for L ≥ 12 in order to estimate Tc(h = 0.075) using the
previously computed ν.

h = 0.075, extrapolated with the value of ν computed
for h = 0.15 and h = 0.3 [36]. We have thus been able
to obtain a precise determination of Tc(h) and of the
critical exponent ν. It is important to mention that the
value of ν which, as we have seen, is universal for h >
0, is very different from that of the h = 0 case. As a
consistency check of our non-standard finite-size scaling
method, we have run a smaller set of simulations for h =

0 and obtained ν(0) = 0.96(11) and T
(0)
c = 2.002(10), in

good agreement with previous results for the h = 0 case
[27, 28]. We remark that both the critical temperature
and ν(0) widely differ from the values in Table I.
The determination of the second independent critical

exponent, the anomalous dimension η of the propagator,
is much more difficult. In principle, we could consider the
scaling of the propagator Ĝ(k) at fixed R12 = R. How-
ever, η is more affected by the scaling corrections than ν.
In fact, as discussed in Appendix C, we had to consider
quadratic corrections to scaling, as A1L

−ωeff +A2L
−2ωeff ,

with ωeff = 2.2(3), in order to fit the data. Our final es-
timate is quoted in Table I. Finally, we can combine our
results in Table I to sketch the de Almeida-Thouless line.
This is plotted in the inset to Figure 1, where we also
show a very good fit to the Fisher-Sompolinsky scaling
[26].
Let us finally mention that one may analyse our data

as well under the assumption of the absence of the
phase transition in a field. This analysis, which relies
on Refs. [37–39], is reported in Appendix D. The data
fail to follow basic scaling relations derived under the
no-transition hypothesis (or, at least, they fail to scale
within the range of system sizes that we could simulate).

II. DISCUSSION

In summary, we have presented a finite-size scaling
study of the four dimensional Edwards-Anderson model
of an Ising spin glass in an external magnetic field. We
have been able to reach large system sizes and low tem-

peratures, thanks to the Janus special-purpose computer.
We introduce a novel finite-size scaling method, which
cures the anomalies first observed in [25]. We present
conclusive evidence for the presence of a de Almeida-
Thouless line in the temperature-magnetic field phase
plane (inset for Figure 1), whose universality class we
characterise. In other words, a spin-glass transition oc-
curs, even without time-reversal symmetry, for realis-
tic models (i.e., well below the upper critical dimension
du = 6). A far-reaching consequence is that the univer-
sality class for the phase transition in structural glasses
may actually exist [24]. Our result also settles a long-
standing controversy in the field of spin glasses (see, e.g.,
[13, 14]).
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Appendix A: Simulations

We have carried out parallel tempering [40, 41] simula-
tions for three values of the magnetic field (see Table II),
with periodic boundary conditions.
Our thermalisation protocol is sample dependent (see

[35] for details). We first perform a number of iterations
large enough to ensure thermalisation in a large fraction
of the samples (typically 90%). We study the autocor-
relation of the temperature flow during the parallel tem-
pering and extend the runs for the slower samples until
a total length of 14 exponential autocorrelation times is
ensured. The final product is a set of thermalised and
almost independent configurations. As an example, each
L = 16 sample in h = 0.15 was simulated at least for
5× 107 heat bath lattice sweeps at each of the NT = 32
temperatures (we performed a parallel tempering update
every 10 heat baths). However, the hardest sample re-
quired as many as 2.6× 1010 heat bath sweeps.
The L = 16 lattices were simulated on the Janus com-

puter with an update speed (for each of its 256 units) of
86 ps per spin flip with a heat bath scheme. The L ≤ 12
lattices were simulated on PC clusters, with a C code
that uses multi-spin coding [42] with 128-bit words (us-
ing the SSE extensions); the update speed in this case is
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L h Tmin Tmax NT Ns

5 0.075 1.300 2.600 14 25600

5 0.150 1.300 2.600 14 25600

5 0.300 0.833 2.797 20 25600

6 0.075 1.300 2.600 14 25600

6 0.150 1.300 2.600 14 25600

6 0.300 0.833 2.797 20 25600

8 0.075 1.350 2.500 24 25600

8 0.150 1.350 2.500 24 25600

8 0.300 1.200 2.325 16 25600

10 0.075 1.350 2.402 26 25600

10 0.150 1.350 2.402 26 25600

10 0.300 1.340 2.243 20 25600

12 0.075 1.425 2.402 24 25600

12 0.150 1.502 2.402 22 12800

12 0.3 1.400 2.160 20 25600

16 0.075 1.400 2.179 32 4000

16 0.15 1.400 2.179 32 4000

16 0.300 1.304 1.681 18 1000

TABLE II. Parameters describing our parallel tempering sim-
ulations. The NT temperatures were evenly spaced between
Tmin and Tmax for L ≤ 12, but with a slightly larger sepa-
ration in the hot region for L = 16. We simulate four real
replicas for each of the Ns samples.

350 ps per spin flip using a Metropolis algorithm (on an
Intel Core2 processor at 2.40GHz) With multi-spin cod-
ing, the samples whose simulations have to be extended
must be extracted from the original 128-sample bundles
to construct new bundles that are then extended with the
same code. Note finally that, since the PC spreads the
spin-flips over 128 samples, the simulation for each sam-
ple is faster on Janus by a factor ∼ 500. This difference
is significant when the equilibration time is large.

Appendix B: The correlation functions

The main quantities that we compute are the correla-
tion functions. In the presence of a magnetic field, the
expectation of each spin Sx is non-vanishing. Hence we
may consider these two correlation functions:

G1(r) =
1

L4

∑

x

(

〈SxSx+r〉 − 〈Sx〉〈Sx+r〉
)2

, (B1)

G2(r) =
1

L4

∑

x

(

〈SxSx+r〉2 − 〈Sx〉2〈Sx+r〉2
)

. (B2)

In the above, the 〈· · · 〉 stands for the thermal average
in a single sample, while the disorder average is indi-
cated by an overline. Note that the Fourier transform
Ĝ1(k = 0) is the spin-glass susceptibility. We simulate

four real replicas {S
(a)
x } (i.e., four systems with the same

coupling evolving independently under the thermal noise)
in order to obtain unbiased estimators of the correlation
functions. In the main text G stands for either of the
G1,2. In the fits we have combined data from both when-
ever it was useful to obtain smaller statistical errors.
The correlation functions were computed off-line over

stored configurations. We note that configurations at
different Monte Carlo times can be combined as long as
they belong to different replicas [43]. This results in small
Monte Carlo errors with a modest number of configura-
tions, so the uncertainty on the final result is dominated
by the sample-to-sample fluctuations. This step is rather
time consuming, so we also use multi-spin coding to ac-
complish it.
In order to define the second-moment correlation

length [44], we consider the following Ornstein-Zernike
expansion for the propagator in Fourier space,

1

Ĝ(k)
=

ξ2

Ĝ(0)

[

1

ξ2
+ ✁k

2 + a4(✁k
2)2 + . . .

]

, (B3)

where ✁k2 = 4
∑

µ sin
2(kµ/2). Then, the common second-

moment correlation length ξ2 is obtained by truncating
the expansion at the ✁k2 term:

ξ2 =
1

2 sin(π/L)

(

Ĝ(0)

Ĝ(k1)
− 1

)1/2

, (B4)

As we comment in the main text, this definition is not
well behaved for our model, due to the anomalous be-
haviour of the k = 0 mode. Actually, there is a sim-
ple, yet unexpected explanation for this anomaly. It
arises whenever soft excitations (Goldstone bosons) are
present in the low-temperature phase, while an exter-
nal magnetic field splits excitations into longitudinal and
transversal [45]. Familiar examples of Goldstone bosons
are magnons, or the phonons in an acoustical branch.
What is most peculiar about spin glasses is that soft
modes are present [46, 47], even if our variables are dis-
crete.

Appendix C: Computation of the scaling corrections

In order to compute corrections to scaling, we recall
that the behavior of ξ2/L and R12 is the same to leading
scaling order:

ξ2/L(T, L, h) = fξ(tL
1/ν) + [scaling corrections], (C1)

R12(T, L, h) = f12(tL
1/ν) + [scaling corrections]. (C2)

As we saw in Figure 2, the effect of the scaling correc-
tions was dramatic for ξ2/L (they erase all trace of a
phase transition in the simulated regime). For R12, the
deviation from the leading scaling was milder, but still
strong enough that we cannot ignore it in our analysis.
Therefore, it becomes necessary to parameterize the cor-
rections.
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Since the number of lattice sizes is not enough to fit
for the leading order behavior and the corrections at the
same time, our strategy has been isolating the latter. In
order so to do, we first consider the evolution of ξ2/L as
a function of R12 (Figure 4). According to (C1), to lead-
ing order this function should not depend on the lattice
size. We see in the figure that this behavior is indeed re-
alized at high temperatures (low values of R12) but that,
close to the transition point, the deviations become very
strong. Therefore, by fixing the value of R12 and study-
ing the evolution of ξ2/L with the system size we can
isolate the corrections to scaling. These include an enor-
mous variety of effects, but the standard practice is to
consider simply the leading corrections, characterized by
an exponent ω

ξ2(T, L, h)/L ≃g
(

R12(T, L, h)
)

+A
(

R12(T, L, h), h
)

L−ω.
(C3)

Notice that the extrapolation to infinite volume depends
only on R12, but that the amplitude of the corrections
depends also separately on the magnetic field h. We can,
therefore, consider a joint fit to (C3) for h = 0.15, 0.3
and several values of R12. Data for h = 0.075 are not
included due to their proximity to h = 0. In this global
fit, the value of ω is shared by all data sets, while the
infinite-volume extrapolation is common to the data sets
with the same R12 but different h. This is represented
in Figure 5, where we only show a few R12 values for
clarity. In this computation we use our data for L > 10.
The result and the chi-square per degree of freedom (as
well as the P -value of the fit) are

ω = 1.43(37), χ2/d.o.f. = 9.2/11 (P = 60%). (C4)

This is the value of ω used in the main text of the pa-
per to compute ν and the critical temperatures. Notice,
however, that for its computation we had to restrict the
fit to lattice sizes L ≥ 12. For smaller systems, the effect
of subleading corrections to scaling is very important, as
evinced by the curvature in the plots of the figure.
Since this is a potentially dangerous effect, we have

also, as a consistency check, tried to include smaller lat-
tices in the fit at the cost of including more correction
terms. Unfortunately, these subleading corrections are
extremely varied and we cannot be sure of the relative
importance of each term. We do know, however, that
among them is a series on powers of L−ω. Therefore, we
can consider an effective parameterization of the correc-
tions in the following way

ξ2(T, L, h)/L ≃g
(

R12(T, L, h)
)

+B
(

R12(T, L, h), h
)

L−ωeff

+ C
(

R12(T, L, h), h
)

L−2ωeff .

(C5)

If we redo the computation of Figure 5 in this non-
standard way, including lattices with L > 6 we obtain
a value of ωeff = 2.2(3). At a first glance the discrep-
ancy with the previous ω may seem alarming. Actually,

0.2

0.4

0.6

1.2 1.4 1.6 1.8 2.0 2.2

ξ/
L

R12

L =   5
L =   6
L =   8
L = 10
L = 12
L = 16

FIG. 4. Plot of ξ2/L against R12 at h = 0.15. To leading
scaling order, this curve should be independent of the system
size, a prediction that is realized at low values of R12 (i.e., far
from the critical point). Close to the critical point, however,
strong scaling corrections appear.

 0.22

 0.26

 0.3

 0  0.02  0.04

ξ 2
(R

12
=

R
)/

L

L– ω

R=1.85
R=1.80
R=1.75

FIG. 5. Plots of ξ2/L at fixed R12 = R as a function of the
lattice size (i.e., vertical cuts of the left panel) for h = 0.15
(empty symbols) and h = 0.3 (solid symbols). The extrapola-
tion to the h-independent limit for each R is governed by the
scaling corrections exponent ω —eq. C3 . We have performed
a joint fit for several values of R, forcing all data sets to share
the same exponent and taking their correlation into account

a computation of ν and the critical temperatures with
this alternative corrections to scaling yields compatible
values: Tc(0.3) = 0.902(33)[1], Tc(0.15) = 1.233(23)[1]
and ν = 1.54(6)[2], with χ2/d.o.f. = 39.0/37 (P = 38%).
This can be seen as a check that, even though the scal-
ing corrections are strong, our computation of the critical
parameters is robust.

A final comment regards the estimation of the second
independent critical exponent, η. We can consider the
scaling of the propagator Ĝ(k) at fixed R12 = y (i.e., at
T = TL

y , see main text), with either of the two models
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for the scaling corrections:

Ĝ(k, TL
y , L, h) ≃ Ak,h,yL

2−η[1 +Bk,h,yL
−ω]. (C6)

Ĝ(k, TL
y , L, h) ≃ Ak,h,yL

2−η[1 + Ck,h,yL
−ωeff (C7)

Dk,h,yL
−2ωeff ].

In this case we have found that the first form, including
only the leading corrections, does not adequately repre-
sent our data unless we exclude from the fit so many
lattice sizes that we lose all degrees of freedom. There-
fore, we cannot make a controlled determination of this
critical exponent using (C6). The most that can be said

is that the propagator Ĝ(k) —and, in particular, the

susceptibility χ̃ = Ĝ(0)— diverges quickly at the critical
point, with a value of η ≈ −0.3, similar to the value for
h = 0.

On the other hand, using the effective quadratic cor-
rections of (C8), the value of this exponent results

η = −0.30(4)[1], (C8)

with χ2/d.o.f. = 9.55/11 (P = 57%). This is the value
quoted in Table I of the paper.

Appendix D: The no-transition hypothesis

Let us assume that no real phase transition arises in a
field. For the sake of brevity, we introduce the reduced
temperature, which depends on the standard tempera-
ture T :

t =
T − Tc

Tc
. (D1)

In particular, note that t(Tc)=0, while t(T =0)=−1. In
this section, we are assuming that the only phase transi-
tion occurs when h = 0, hence Tc refers to the zero-field
critical temperature. Therefore, in a field, the correlation
length in the thermodynamic limit is finite for all temper-
atures: ξ(t, h) < ∞ if h > 0. Under these circumstances,
it is unavoidable that

lim
L→∞

R12(t, h, L) = 1 . (D2)

Nevertheless, it is quite reasonable to expect that R12

verify a scaling law (W is a scaling function):

R12(t, h, L) = W (ξ(t, h)/L) (D3)

In order to model our data according to this expectation,
we need some educated guess for ξ(t, h). We shall get it
from the droplet model for spin glasses [37, 46].
We first gather some necessary information in

Sects. D 1 and D2. Our data are analyzed under this
light in Sect. D 3.

1. The critical behavior according to the droplet

model

In the droplet model for spin glasses [37], one expects
for t = −1 (i.e. T = 0) a correlation length that diverges
only in the limit of h → 0:

ξ(t = −1, h) ∝ h−2/(D−2θ) , (D4)

where θ is the droplet exponent. In D = 4, that exponent
is θ ≈ 0.7 [38, 39]. So, the prediction is

ξdroplet(t = −1, h) ∝ 1/h0.77 . (D5)

Fisher and Huse [37], define as well a dynamical de
Almeida-Thouless (dAT) line. That is, a freezing tem-
perature which should scale very much as the equilib-
rium dAT line (which is inexistent on their theory). This
freezing line Tf (tm, h) would depend on the measuring
time tm as (τ0 is a microscopic time unit and Ψ is the
barrier exponent)

Tc − Tf (tm, h)

Tc
∼ h

2
γ+β [log(tm/τ0)]

(D−θ)/(γ+β)Ψ . (D6)

Hence, for a fixed measuring time tm, the freezing line
scales with h just as expected for the dAT line, see
Sect. D 2 below.
Fisher and Huse description [37] of the crossover phe-

nomena to be observed in equilibrium, coincides with our
Eq. (D17) (see below).

2. Scaling close to the h = 0 critical point

The critical behavior of the Edwards-Anderson model,
in D = 4 and h = 0, is relatively well understood [27, 28]:

Tc = 2.03(3) , (D7)

ν = 1.025(15) , (D8)

η = −0.275(25) . (D9)

From these estimates, we obtain the Renormalization
Group (RG) eigenvalues yt and yh,

yt = 1/ν = 0.976(14) , (D10)

yh =
D + 2− η

2
= 3.137(13) . (D11)

In order to make connection with Eq. (D6), note, in par-
ticular, that yt/yh = 1/(β + γ).
The Fisher-Sompolinski relation [26], follows from a

simple scaling argument. Recall that, for spin glasses,
the ordering field is h2 rather than h, due to the gauge
invariance of the coupling distribution. Hence, the RG
transformation of scale b transforms h2 into byhh2, while
the correlation length transforms as (see, e.g., [29])

ξ(t, h) = b ξ(bytt, byh/2h) . (D12)
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Let us now choose b such that byhh2 = 1, hence

ξ(t, h2) =
1

h2/yh
G(t/h2yt/yh) , (D13)

whereG(x) is a scaling function. Now, imagine that there
is a dAT line. Then, one should be able of adjusting the
temperature, at fixed h > 0, in such a way that ξ(t, h)
grows unboundly. On the view of Eq. (D13), this is only
possible if the scaling function G(x) has a singularity at
some x∗. Hence, the dAT line would be located at

t = x∗h2yt/yh = x∗h2/(β+γ) , (D14)

at least while the scaling fields t and h are small enough
to behave linearly under the RG, as we have assumed in
Eq. (D12).

3. The ansatz for ξ(t, h) and the comparison with

numerical data

As said above, we need some educated guess about
the behavior of ξ(T, h) in the droplet picture. We take
inspiration from Eqs. (D13) and (D4).
Of course, the scaling function G(x) in Eq. (D13) must

be regular for all x because, according to the droplet pic-
ture, there is no phase transition. However, the func-
tion G(x) must be singular for x → −∞ (which corre-
sponds to taking first the limit T → 0, i.e. t = −1,
and later the limit h → 0). In fact, if G(x) would
tend to a constant for large, negative x, one would have
ξ(T = 0, h) ∼ 1/h2/yh ≈ 1/h0.64. This is inconsistent
with Eq. (D5) (i.e. ξ ∝ 1/h0.77). Nevertheless, a mild
singularity G(x → −∞) ∼ (−x)c, where exponent c ver-
ifies

2

yh
(ytc+ 1) =

2

D − 2θ
(D15)

would make equation (D13) consistent with Eq. (D4).
Solving for c, we get

c =
yh −D + 2θ

yt(D − 2θ)
≈ 0.21 (D16)

Hence, our ansatz for ξ(t, h), inspired by the droplet the-
ory, is

ξansatz(t, h) =
(−t)c

h
2

D−2θ

F (t/h2yt/yh) . (D17)

The new scaling function is F (x) = G(x)/(−x)c. F (x)
should remain finite in the limit x → −∞ (note, however,
that F (x) ∼ 1/(−x)c for x ≈ 0, which corresponds to the
neighborhood of Tc).
Plugging ξansatz(t, h) in (D3), we get

R12(t, h, L) = W (ξansatz(t, h)/L)

= W

(

(−t)c

Lh2/(D−2θ)
F (t/h2yt/yh)

)

.
(D18)

 0
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 1
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2/
(D

-2
θ)

 (
-t

)-c

t/h2 yt /yh

R=2.0
L=5
L=6
L=8
L=10
L=12
L=16
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 0.5
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-0.6 -0.4 -0.2  0

L
 h
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(D

-2
θ)

 (
-t

)-c

t/h2 yt /yh

R=1.8
L=5
L=6
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FIG. 6. Numerical test of Eq. (D19). For every lat-
tice size L, and fields h, we obtain the temperature where
R12(T

L
R , L, h) = R. The reduced temperature tLR(h) is com-

puted through Eq. (D1) (Tc is the zero-field critical tempera-
ture). According to the droplet model, and neglecting scaling

corrections, for fixed R, Lh2/(D−2θ)[−tLR(h)]
c must be an L-

independent function of tLR(h)/h
2yt/yh . We plot data for R =

2 (top), and R = 1.8 (bottom). For R = 2.0, TL
R lies within

our simulated temperature trange only for h = 0.15, 0.075. In
the plot, we used θ = 0.7, which is an average among θ = 0.65
(from [38]), and θ = 0.82 (from [39]). No matter the value

that we take for θ in this range, Lh2/(D−2θ)[−tLR(h)]
c grows

quickly with L and draws an increasingly steep curve.

Now, in the main text we paid great attention to
TL
R (h), namely the temperature where R12(T

L
R , L, h) =

R (one may compute easily the reduced temperature
tLR(h)). We thus recast Eq. (D18) in a form directly
amenable to a scaling analysis:

Lh2/(D−2θ)[−tLR(h)]
cW−1(R) = F

(

tLR(h)

h2yt/yh

)

, (D19)

where W−1(x) is the inverse function of W (x).
Hence, the prediction of the droplet model is fairly sim-

ple. For fixed R, and barring scaling corrections (negli-
gible for large L), the numerical estimate of the l.h.s.,
namely Lh2/(D−2θ)[−tLR(h)]

c, must be an L-independent
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function of tLR(h)/h
2yt/yh . On the other hand, if a phase

transition occurs at fixed t(h)/h2yt/yh (as claimed in the
main text), tLR(h) should tend to t(h) while the l.h.s.
should diverge as L grows. In other words, if there is a
dAT line, data should tend to a vertical line in the large
L limit.

These two alternatives are compared in Figure 6. In
fact, our estimate for Lh2/(D−2θ)[−tLR(h)]

c grows fast

with L and draws an increasingly steep curve, which is
the behavior expected in the presence of a dAT line. This
is hardly surprising, because the numerical data in Fig-
ure 2–bottom, where R12 shows scale invariant behavior,
are plainly inconsistent with our starting assumption in
Eq. (D2).
In summary, either our simulated sizes are entirely in

a preasymptotic regime, or the no-transition hypothesis
is not realized.
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