Publication:
Sampling Quantum Nonlocal Correlations with High Probability

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2016
Authors
González-Guillén, C.E.
Jimenez, C.H.
Villanueva, Ignacio
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Springer
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
It is well known that quantum correlations for bipartite dichotomic measurements are those of the form (Formula presented.), where the vectors ui and vj are in the unit ball of a real Hilbert space. In this work we study the probability of the nonlocal nature of these correlations as a function of (Formula presented.), where the previous vectors are sampled according to the Haar measure in the unit sphere of (Formula presented.). In particular, we prove the existence of an (Formula presented.) such that if (Formula presented.), (Formula presented.) is nonlocal with probability tending to 1 as (Formula presented.), while for (Formula presented.), (Formula presented.) is local with probability tending to 1 as (Formula presented.).
Description
Keywords
Citation
1. Acin, A., Brunner, N., Gisin, N., Massar, S., Pironio, S., Scarani, V.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98, 230501 (2007) 2. Acín, A., Gisin, N., Masanes, L.: From Bell’s theorem to secure quantum key distribution. Phys. Rev.Lett. 97, 120405 (2006) 3. Ambainis, A., Backurs, A., Balodis, K., Kravcenko, D., Ozols, R., Smotrovs, J., Virza, M.: Quantum strategies are better than classical in almost any XOR game, In: Automata, Languages, and Programming Lecture Notes in Computer Science, vol. 7391, pp. 25–37 (2012) 4. Aspect, A.: Bell’s inequality test: more ideal than ever. Nature 398, 189–190 (1999) 5. Aspect, A., Grangier, P., Roger, G.: Experimental tests of realistic local theories via Bell’s theorem. Phys. Rev. Lett. 47, 460 (1981) 6. Barvinok, A.: Measure Concentration. Math 710 Lecture Notes. Department of Mathematics, University of Michigan (2005) 7. Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics 1, 195–200 (1964) 8. Buhrman, H., Cleve, R., Massar, S., Wolf, R.de : Nonlocality and communication complexity. Rev. Mod. Phys. 82, 665 (2010) 9. Dasgupta, S., Gupta, A.: An elementary proof of a theorem of Johnson and Lindenstrauss. Random Struct. Alg. 22(1), 60–65 (2003) 10. Defant, A., Floret, K.: Tensor Norms and Operator Ideals. North-Holland, Amsterdam (1993) 11. González-Guillén, C.E., Palazuelos, C., Villanueva, I.: Euclidean Distance Between Haar Orthogonal and Gaussian Matrices. arXiv:1412.3743 12. Hiai, F., Petz, D.: The Semicircle Law, Free Random Variables and Entropy. American Mathematical Society, Providence (2000) 13. Marcenko, V.A., Pastur, L.A.: Distribution of eigenvalues for some sets of random matrices. Math. USSR Sbornik 1, 457–483 (1967) 14. Pironio, S., Acín, A., Massar, S., Boyerdela Giroday, A., Matsukevich, D.N., Maunz, P., Olmschenk, S., Hayes, D., Luo, L., Manning, T.A., Monroe, C.: Random numbers certified by Bell’s theorem. Nature (London) 464, 1021 (2010) 15. Tsirelson, B.S.: Some results and problems on quantum Bell-type inequalities. Hadronic J. Supp. 8(4), 329–345 (1993) 16. Vazirani, U., Vidick, T.: Fully device-independent quantum key distribution. Phys. Rev. Lett. 113, 140501 (2014) 17. Vazirani, U., Vidick, T.: Certifiable quantum dice. Phil. Trans. R. Soc. A 370, 3432–3448 (2012)
Collections