Publication:
No surviving evolved companions of the progenitor of SN 1006

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2012-09-27
Authors
González Hernández, Jonay I.
RuizLapuente, Pilar
Tabernero, Hugo M.
Canal, Ramón
Méndez, Javier
Bedin, Luigi R.
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Nature Publishing Group
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Type Ia supernovae are thought to occur when a white dwarf made of carbon and oxygen accretes sufficient mass to trigger a thermonuclear explosion(1). The accretion could be slow, from an unevolved (main-sequence) or evolved (subgiant or giant) star(2,3) (the single-degenerate channel), or rapid, as the primary star breaks up a smaller orbiting white dwarf(3,4) (the double-degenerate channel). A companion star will survive the explosion only in the single-degenerate channel(5). Both channels might contribute to the production of type Ia supernovae(6,7), but the relative proportions of their contributions remain a fundamental puzzle in astronomy. Previous searches for remnant companions have revealed one possible case for SN 1572 (refs 8, 9), although that has been questioned(10). More recently, observations have restricted surviving companions to be small, main-sequence stars(11-13), ruling out giant companions but still allowing the single-degenerate channel. Here we report the results of a search for surviving companions of the progenitor of SN 1006 (ref. 14). None of the stars within 4 arc minutes of the apparent site of the explosion is associated with the supernova remnant, and we can firmly exclude all giant and subgiant stars from being companions of the progenitor. In combination with previous results, our findings indicate that fewer than 20 per cent of type Ia supernovae occur through the single-degenerate channel.
Description
© 2012 Macmillan Publishers Limited. This work was supported by the Spanish Ministerio de Ciencia e Innovación (MICINN), the Universidad Complutense de Madrid (UCM) and the Comunidad de Madrid, and is based on observations collected with the UVES spectrograph at the VLT/UT2 8.2-m Kueyen Telescope (ESO run ID, 69.D-0397(A)) at the Paranal Observatory, Chile. We are grateful to the Cerro Paranal Observatory staff and to the User Support Department of ESO for their help.
Unesco subjects
Keywords
Citation
1 Nomoto, K., Saio, H., Kato, M., & Hachisu, I. Thermal Stability of White Dwarfs Accreting Hydrogen-rich Matter and Progenitors of Type Ia Supernovae. Astrophys. J., 663, 1269–1276 (2007) 2 Patat, F., Chandra, P., Chevalier, R., et al. Detection of Circumstellar Material in a Normal Type Ia Supernova. Science, 317, 924–926 (2007) 3 Branch, D., Livio, M., Yungelson, L.R., Boffi, F., Baron, E. In search of the progenitors of Type Ia supernovae. Publ. Astron. Soc. Pacif., 107, 1019–1029 (1995) 4 Pakmor, R., Kromer, M., Röpke, F. K., et al. Sub-luminous type Ia supernovae from the mergers of equal-mass white dwarfs with mass 0.9Msolar. Nature, 463, 61–64 (2010) 5 Ruiz Lapuente, P. The quest for a supernova companion. Science, 276, 1813–1814 (1997) 6 Greggio, L. The rates of Type Ia supernovae – II. Diversity of events at low and high redshifts. Month. Not. Royal Astron. Soc., 406, 22–42 (2010) 7 Brandt, T.D., et al. The ages of type Ia supernova progenitors. Astrophys. J., 140, 804–816 (2010) 8 Ruiz Lapuente, P. et al. The binary progenitor of Tycho Brahe’s 1572 supernova. Nature, 431, 1069–1072 (2004) 9 González Hernández, J.I., et al. The chemical abundances of Tycho G in supernova remnant 1572. Astrophys. J., 691, 1–15 (2009) 10 Kerzendorf, W. et al. Subaru high resolution spectroscopy of star G in the Tycho supernova remnant. Astrophys. J, 701, 1665–1672 (2009) 11 Nugent, P.E., et al. Supernova SN 2011fe from an exploding carbon–oxygen white dwarf star. Nature, 480, 344–347 (2011) 12 Li, W., et al. Exclusion of a luminous red giant as a companion star to the progenitor of supernova SN 2011fe. Nature, 480, 348–350 (2011) 13 Edwards, Z.I., Pagnotta, A., Schaefer, B.E. The progenitor of the type Ia supernova that created SNR 0519–69.0 in the Large Magellanic Cloud. Astrophys. J., 747, L19–L23 (2012) 14 Stephenson, F.R. SN 1006: the brightest supernova. Astron. Geophys, 51, 5.27–5.32 (2010) 15 Schaefer, B.E., Pagnotta, A. An absence of ex–companion stars in the type Ia supernova remnant SNR 0509–67.5. Nature, 481, 164–166 (2012) 16 Sternberg, A., et al. Circumstellar material in type Ia supernovae via sodium absorption features. Science, 333, 856–859 (2011) 17 Kasen, D. Seeing the collision of a supernova with its companion star. Astrophys. J., 708, 1025–1031 (2010) 18 Winkler, P.F., Gupta, G., Long, K.S. The SN 1006 remnant: optical proper motions, deep imaging, distance, and brightness at maximum. Astrophys. J., 585, 324–335 (2003) 19 Cutri, R. M., Skrutskie, M. F., van Dyk, S., et al. 2MASS All-Sky Catalog of Point Sources. VizieR Online Data Catalog, 2246, 0 (2003) 20 Allen, G.E., Petre, R., Gotthelf, E.V. X–ray synchrotron emission from 10–100 TeV cosmic ray electrons in the supernova remnant SN 1006. Astrophys. J., bf 558, 739–752 (2001) 21 Monet, D.G. The 526,289,881 objects in the USNO–A2.0 Catalogue. Bull. Amer. Astron. Soc., 30, 1427 (1998) 22 Winkler, P.F., Long, K.S., Hamilton, A.J.S., Fesen, R.A. Probing multiple sight lines through the SN 1006 remnant by ultraviolet absorption spectroscopy. Astrophys. J., 624, 189–197 (2005) 23 Tabernero, H. M., Montes, D., González Hernández, J. I. Chemically tagging the Hyades Supercluster. A homogeneous sample of F6-K4 kinematically-selected northern stars. Astron. Astrophys., in press (2012). Preprint at (http://arxiv.org/abs/astroph/1245.4879) 24 Sneden, C. PhD thesis. Univ. Texas, Austin (1973) 25 Kurucz, R.L. ATLAS89 Stellar Atmospheres Programs and 2 km s−1 Grid. (CD–ROM, Smithsonian Astrophysical Observatory, Cambridge) (1993) 26 Neves, V., Santos, N.C., Sousa, S.G., Correia, A.C.M, Israelian, G. Chemical abundances of 451 stars from the HARPS GTO planet search program. Thin disk, thick disk, and planets Astron. Astrophys., 497, 563–81 (2009) 27 Pan, K.–C., Ricker, P., Taam, R. Impact of type Ia supernova ejecta on the binary companions in the single–degenerate scenario. Astrophys. J., 750, 151 (2012) 28 Marietta, E., Burrows, A., Fryxell, B. Type Ia supernova explosions in binary systems: the impact on the secondary star and its consequences. Astroph. J. Suppl., 128, 615–650 (2000) 29 Pakmor, R., Röpke, F.K., Weiss, A., Hillebrandt, W. The impact of Type Ia supernovae on main sequence binary companions. Astron. Astrophys., 489, 943–951 (2008) 30 Podsiadlowski, P. On the evolution and appearance of a surviving companion after a Type Ia supernova explosion. Preprint at (http://arxiv.org/abs/astro-ph/0303660) (2003) Supplementary References 31 Justham, S. Single degenerate type Ia supernovae without hydrogen contamination. Astrophys. J. (Letters), 730, L34–L38 (2011) 32 Di Stefano, R., Voss, R., Claeys, J.S.W. Spin–up/spin–down models for Type Ia supernovae. Astrophys. J., 738, L1–L4 (2011) 33 Yoon, S., Langer, N. Presupernova evolution of accreting white dwarfs with rotation. Astron. Astrophys., 419, 623–644 (2004) 34 Yoon, S., Langer, N. On the evolution of rapidly rotating massive white dwarfs towards supernovae or collapses. Astron. Astrophys., 435, 967–985 (2005) 35 Saio, H., Nomoto, K. Off–center carbon ignition in rapidly rotating, accreting carbon–oxygen white dwarfs. Astrophys. J., 615, 444–440 (2004) 36 Piro, A.L. The internal shear of Type Ia supernova progenitors during accretion and simmering. Astrophys. J., 679, 616–625 (2008) 37 Allende Prieto, C., Asplund, M., Fabiani Bendicho, P. S4N: A spectroscopic survey of stars in the solar neighborhood. The Nearest 15 pc. Astron. Astrophys., 423, 1109–1117 (2004) 38 Reddy, B. E., Lambert, D. L., Allende Prieto, C. Elemental abundance survey of the Galactic thick disc. Monthly Not. Royal Astron. Soc., 367, 1329–1366 (2006) 39 Ramírez, I., Allende Prieto, C., Lambert, D. L. Oxygen abundances in nearby stars. Clues to the formation and evolution of the Galactic disk. Astron. Astrophys., 465, 271–289 (2007) 40 Bertelli, G., Bressan, A., Chiosi, C., Fagotto, F., Nasi, E. Theoretical isochrones from models with new radiative opacities. Astron. Astrophys. Suppl., 106, 275–302 (1994) 41 Bessell, M. S., Castelli, F., Plez, B. Model atmospheres broad-band colors, bolometric corrections and temperature calibrations for O - M stars. Astron. Astrophys., 333, 231–250 (1998) 42 Schaifers, K., et al. Astronomy and Astrophysics. C: Interstellar Matter, Galaxy, Universe, in Landolt–Börstein: Numerical Data and functional Relationships in Science and Technology. New Series (Springer–Verlag, Berlin) (1982) 43 González Hernández, J. I., & Bonifacio, P. A new implementation of the infrared flux method using the 2MASS catalogue. Astron. Astrophys., 497, 497–509 (2009) 44 Sousa, S.G., Santos, N.C., Israelian, G., Mayor, M., Monteiro, M.J.P.F.G. A new code for automatic determination of equivalent widths: Automatic Routine for line Equivalent widths in stellar Spectra (ARES). Astron. Astrophys., 469, 783–791 (2007) 45 Sousa, S.G. et al. Spectroscopic parameters for 451 stars in the HARPS GTO planet search program. Stellar [Fe/H] and the frequency of exo–Neptunes. Astron. Astrophys., 487, 373–381 (2008) 46 Gray, D. F. The observation and analysis of stellar photospheres. Camb. Astrophys. Ser., Vol. 20 (1992)
Collections