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Critical behavior of the dilute antiferromagnet in a magnetic field
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We study the critical behavior of the diluted antiferromagnet in a field with the tethered Monte Carlo formalism.
We compute the critical exponents (including the elusive hyperscaling violations exponent θ ). Our results provide
a comprehensive description of the phase transition and clarify the inconsistencies between previous experimental
and theoretical work. To do so, our method addresses the usual problems of numerical work (large tunneling
barriers and self-averaging violations).
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Understanding collective behavior in the presence of
quenched disorder has long been one of the most challenging
and interesting problems in statistical mechanics. One of
its simplest representatives is the random field Ising model
(RFIM), which has been extensively studied both theoretically
and experimentally.1 The RFIM is physically realized by a
diluted antiferromagnet in an applied magnetic field (DAFF).

It is known that the D = 3 DAFF (or RFIM) undergoes
a phase transition, but the details remain controversial, with
severe inconsistencies between analytical, experimental, and
numerical work. A scaling theory is generally accepted,
where the dimension D of the system is replaced by D − θ

in the hyperscaling relation. This third independent critical
exponent, believed to be θ ≈ 1.5, is inaccessible both to a
direct experimental measurement and to traditional Monte
Carlo methods.

The values of the remaining critical exponents, seemingly
more straightforward, are also controversial. On the experi-
mental front, different ansätze for the scattering line shape
yield mutually incompatible estimates of the thermal critical
exponent, namely, ν = 0.87(7) (Ref. 2), or ν = 1.20(5).3

Furthermore, the experimental estimate of the anomalous
dimension η = 0.16(6) (Ref. 2) violates hyperscaling bounds,
if one is to believe the experimental claims of a diverging
specific heat (α � 0).4

On the other hand, the numerical determination of ν has
steadily shifted, the most precise estimate being 1.37(9),5 in-
consistent with the experimental values and barely compatible
with α ≈ 0. The value of α itself is very hard to measure in a
numerical simulation.6

More fundamentally, the smallness of the magnetic ex-
ponent β, combined with the numerical observation of
metastability,7 has led some authors to suggest that the
transition in the DAFF may be of first order.

Ultimately, the physical reasons for this confusion betray
the fact that the traditional tools of statistical mechanics are
ill suited to systems with rugged free-energy landscapes. Both
experimentally and numerically, the system gets trapped in
local minima, with escape times that grow as log τ ∼ ξ θ (ξ
is the correlation length). This not only makes it exceedingly
hard to thermalize the system, but also generates a rare-events
statistics, causing self-averaging violations.8

In this Rapid Communication we study the DAFF with
the tethered Monte Carlo (TMC) formalism.9 Our approach

restores self-averaging and is able to negotiate the free-energy
barriers of the DAFF to equilibrate large systems safely. It also
provides direct access to the key parameter θ . We thus obtain a
comprehensive picture of the phase transition, consistent both
with analytical results for the RFIM and with experiments on
the DAFF, and shed light on the reasons behind the previous
discrepancies.

In the following we provide a brief outline of the tethered
formalism applied to the DAFF (see Refs. 9 and 10 for
details). We note, however, that most of our physical results are
translated into the familiar canonical language. In a tethered
computation, we run simulations where one (or more) order
parameters of the system are (almost) constrained. In this way,
we eliminate the need for exponentially slow tunneling caused
by the free-energy barriers associated with these parameters.
From these tethered simulations the Helmholtz effective poten-
tial is accurately reconstructed with a fluctuation-dissipation
formalism.

We consider a system with N = LD spins, sx = ±1, on the
nodes of a cubic lattice with periodic boundary conditions and
interacting through the Hamiltonian

H =
∑
〈x, y〉

εxsxε ys y − hM − hsMs = U − hM − hsMs. (1)

Here h and hs are the applied fields, coupled to the magneti-
zation and staggered magnetization,

M = Nm =
∑

x

εxsx, Ms =
∑

x

εxsxe
iπ

∑D
μ=1 xμ . (2)

We are ultimately interested in hs = 0, but we will find this
parameter useful. The quenched occupation variables εx are
1 with probability p = 0.7 and zero otherwise (this value
is chosen to be far both from the percolation threshold and
from the pure system). For D = 3, the system undergoes a
paramagnetic-antiferromagnetic phase transition, where ms is
the order parameter.

Let us consider a single sample of the system (i.e., a
fixed {εx}). In our tethered computation, we define smooth
magnetizations m̂ and m̂s by coupling m and ms to Gaussian
baths and work in a statistical ensemble for fixed (m̂,m̂s) with
weight9

ω(m̂,m̂s; {sx}) ∝ e−βUγ (m̂,m)γ (m̂s,ms), (3)
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where γ (x̂,x) = eN(x−x̂)(x̂ − x)(N−2)/2
(x̂ − x), and 
(x̂ −
x) is the step function. The smoothing procedure shifts
the mean value of the parameters, so x̂ � x + 1/2. This
ensemble is related to the canonical one through a Legendre
transformation. For instance, the partition function of the
system is

Z =
∫

dm̂ dm̂s

∑
{sx }

ω(m̂,m̂s; {sx}) eβN(hm̂+hsm̂s)

=
∫

dm̂ dm̂s e−N[�N (m̂,m̂s)−βhm̂−βhsm̂s], (4)

where �N (m̂,m̂s) is the Helmholtz effective potential.
We can reconstruct �N from computations at fixed (m̂,m̂s)

via the so-called tethered field (b̂,b̂s)

b̂ = 1 − 1/2 − 1/N

m̂ − m
, b̂s = 1 − 1/2 − 1/N

m̂s − ms
. (5)

In particular, the gradient ∇�N is

(∂�N/∂m̂, ∂�N/∂m̂s) = (〈b̂〉m̂,m̂s , 〈b̂s〉m̂,m̂s ). (6)

The notation 〈· · · 〉m̂,m̂s denotes tethered expectation values,
computed with weight (3).

A TMC computation consists of a set of independent Monte
Carlo simulations at fixed (m̂,m̂s) that are then combined to
reconstruct �N . Note that the effective potential (as a function
of the magnetizations) has all the information about the system
in the tethered ensemble, just as the free energy (as a function
of the applied fields) has all the information in the canonical
ensemble.

The canonical averages at fixed (h,hs) can be recovered with
Eq. (4). Note that, according to (6), this integral is dominated
by saddle points (m̂,m̂s) such that

〈b̂〉m̂,m̂s = βh, 〈b̂s〉m̂,m̂s = βhs. (7)

We can determine the relative weights of different saddle points
by line integrating the tethered field along any connecting path.
We are interested in the case hs = 0.

So far we have summarized the application of TMC for a
single sample. Since it consists of simulations at fixed (m̂,m̂s),
it eliminates the need to tunnel between coexisting phases and,
hence, equilibrates the system much faster than a canonical
simulation. However, we still face the serious problem of self-
averaging violations. In principle, the definition of quenched
disorder implies reconstructing the free energy with (4) before
computing the disorder average. In this Rapid Communication,
however, we sample average the Helmholtz potential rather
than the free energy (a similar approach was taken in Ref. 11).

In order to motivate this approach, let us consider the top
panel in Fig. 1. We compare the tethered average 〈b̂s〉m̂,m̂s for
two individual samples with the disorder average over 1000
samples. The zeros of this latter curve separate an internal
gap with chaotic fluctuations, where the field vanishes in the
thermodynamical limit, from an external region where the field
is actually self-averaging.

We exploit the situation by considering a small, but finite,
value of hs. The saddle point defined by this field will be in the
self-averaging region. We can therefore solve the saddle-point
equations (7) on average, rather than sample by sample. Only
afterward do we make hs → 0 in the solution (this is analogous
to the mathematical definition of spontaneous symmetry
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FIG. 1. (Color online) Top: Tethered field 〈b̂s〉m̂,m̂s , Eq. (5), at
T = 1.6 and m̂ = 0.11, for two individual samples of an L = 24
system (� and �) and for the sample average (�) as a function of m̂s.
The field is self-averaging in the region outside the two external zeros.
The errors cannot be seen at this scale. Bottom: Effective potential
�̄N (m̂ = 0.11,m̂s) obtained by integrating the averaged tethered field
of the top panel. The two antiferromagnetic minima are separated by
a very large barrier (the escape time is τ ∼ exp[N��̄]), and there is
no paramagnetic minimum.

breaking). The limit hs = 0+ is essentially equivalent to
considering a “smeared” saddle point and averaging over all m̂s

〈O〉m̂ =
∫

dm̂s 〈O〉m̂,m̂s
e−N[�̄N (m̂,m̂s)−�0] . (8)

�0 is a normalization constant. Since we work at fixed m̂, �̄N

is just the one-dimensional integral of 〈b̂s〉m̂,m̂s
.

The other saddle-point equation 〈b̂〉m̂ = βh defines a one-
to-one relation m̂(h) so that 〈O〉m̂(h) and the canonical 〈O〉(h)
both tend to the same thermodynamical limit (ensemble equiv-
alence). Furthermore, for finite lattices 〈O〉m̂ is better behaved
statistically and arguably more faithful to the physics of an
experimental sample. Therefore, we shall identify 〈O〉(h) =
〈O〉m̂(h) and use the more familiar canonical notation. See
Refs. 9 and 10 for a more detailed study of this ensemble
equivalence.

We have used the above outlined procedure to thermalize
the DAFF for temperatures down to T = 1.6 and sizes up to
L = 32 (1000 samples for L = 8, 12, 16, 24, and 700 samples
for L = 32). For each size we simulate a grid of ≈150 points
in the (m̂,m̂s) plane (five values of m̂, and ≈30 values of m̂s on
each). We also use temperature parallel tempering. This is only
necessary to thermalize L � 24, but it is convenient for smaller
lattices because we are also interested in the T dependence.
Thermalization is ensured using the methods described in
Ref. 12. We provide more technical details in Ref. 10.

The first interesting physical result is the effective potential
itself. Some authors have found metastable behavior in the
DAFF, interpreted as a sign of a first-order transition.7 This
should manifest as the coexistence of antiferromagnetic and
paramagnetic minima in �̄. However (see the bottom panel
in Fig. 1), our results exhibit only two antiferromagnetic
minima, separated by a very large free-energy barrier. In
a canonical simulation, the system tunnels back and forth
between the two, with an escape time τ ∼ exp[N��̄]. This
explains the metastable behavior observed in previous work
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FIG. 2. (Color online) Top: Correlation length ξ/L as a function
of the applied magnetic field h for T = 1.6. The curves intersect,
marking a second-order phase transition. Bottom: Scaling plot of ξ

as a function of T for h = −2.13, showing large corrections to leading
scaling (we use ν = 1.05).

(and the difficulty to thermalize large samples with canonical
methods), but is inconsistent with a first-order scenario.

Of course, we could be looking at a value of m̂ (equivalently,
of h) far from the critical point. In order to find the phase
transition, we compute the usual second-moment correlation
length ξ .13 We use the propagator Fh(k) = N〈φ(k)φ(−k)〉(h),
where φ is the staggered Fourier transform of the spin field.

We have plotted ξ (h)/L at T = 1.6 as a function of the
applied field h in the top panel of Fig. 2. The curves for
different L show very clear intersections, marking the onset of
a second-order phase transition. In order to estimate the critical
exponents, we apply the quotients method.13 We consider
the ratios of physical observables for system sizes (L,2L),
computed at the intersection point h∗(L) of their respective
ξ (h)/L. We have applied this method to ∂hξ ∼ L1+1/νh and
〈m2

s 〉(h) ∼ L2β/νh−3 in Table I. Note that our estimate for
β is very low, in accordance with previous numerical and
experimental work.

We can also estimate ν from the temperature dependence
of ξ at fixed h, obtaining a second estimate νT (Table I). Both
determinations of ν should coincide, but we obtain νh ≈ 0.75
and νT ≈ 1.05. We can see in the bottom panel of Fig. 2 that
this discrepancy is due to strong scaling corrections. If one
attempts a collapse of the curves, focusing on different ranges
for ξ/L, the corresponding values of ν vary from ν ≈ 0.75 to
ν > 2, which explains the wide range of variation in previous
numerical estimates of ν. By safely locating the critical point
and using the quotients method, we have minimized the scaling
corrections, but not eliminated them completely.

We need an additional critical exponent in order fully to
characterize the critical behavior of the DAFF. This is the
hyperscaling violations exponent θ , which can be related to
the free-energy barrier between the ordered and the disordered
phase: �F ∝ Lθ .14 The computation of these barriers is very
difficult with traditional methods, but straightforward with
TMC. Indeed, we can identify �F with the ��̄N between the
two saddle points (disordered and antiferromagnetic) defined
by the critical hc.

TABLE I. Computation of the critical exponents using the
quotients method. We extract our estimates from ratios of physical
observables for sizes (L,2L), computed at the intersection point of
ξ/L. The first four columns give results for fixed T = 1.6 and the
last one at fixed h = −2.13.

L h∗(L) β/νh νh α/νh νT

8 −2.178(4) 0.0125(7) 0.887(5) 0.0765(25) 1.07(9)
12 −2.140(5) 0.0104(5) 0.790(9) 0.0781(27) 1.01(4)
16 −2.123(3) 0.0119(4) 0.742(7) 0.224(4) 1.10(15)

We can compute this barrier simply by evaluating the line

integral of (〈b̂〉m̂,m̂s
− βhc, 〈b̂s〉m̂,m̂s

) along a path joining the
two saddle points. We know that one of them will lie on the
line m̂s = 0.5 (ms ≈ 0). Therefore, we first integrate from the
antiferromagnetic saddle point to m̂s = 0.5 at fixed m̂. We
then integrate at fixed m̂s = 0.5 until we reach the disordered
saddle point. We give the resulting values of ��̄N = �F/N

in Table II. Our final estimate is θ = 1.469(20), incompatible
with the θ = D − 1 of a first-order phase transition.

Notice that the hyperscaling relation 2 − α = ν(D − θ ),
coupled with our values for ν and θ , predicts not only a
divergence of the specific heat, as observed in experiments,
but also a positive α. We could test this result directly by
computing C = ∂h〈m〉. Unfortunately, the quotients method is
ill suited to this quantity, whose scaling is more aptly described
as C � A + BLα/ν .15 Therefore, one needs extremely large
values of L to reach the asymptotic regime C ∼ Lα/ν . The
behavior of the quotients in Table I is consistent with this
expectation.

It has been proposed that θ is not independent, but given
by θ = D/2 − β/ν.16 Combining Tables I and II, we see that
our numerical results are indeed compatible with this two-
exponent scenario.

We can use our results to comment on the experimental
situation. In an experimental study, the critical exponents
are computed from fits to the scattering line shape S(k) =
Sd(k) + Sc(k), where the two terms distinguish connected
and disconnected contributions. In the two-exponent scenario,
strongly supported by our data, the most singular term in Sd is
the square of Sc. This ansatz was applied in Ref. 2, yielding ν =
0.87(7) and η = 0.16(6). Since η = θ − 1 + 2β/ν, however,
this last value violates hyperscaling bounds and is also

TABLE II. Computation of the hyperscaling violations exponent
θ from the free-energy barriers �F . We report fits to �F = ALθ , for
different ranges, giving the χ 2 and the degrees of freedom of each
fit. Our preferred final estimate is θ = 1.469(20), taking the central
value of the fit for L � 12 and the more conservative error of the fit
for L � 16.

L �F/N Fit range θ χ 2/d.o.f.

8 0.03382(29) L � 8 1.448(9) 5.56/3
12 0.01756(15) L � 12 1.469(13) 0.44/2
16 0.01138(9) L � 16 1.461(20) 0.16/1
24 0.00608(5)
32 0.00392(5)
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incompatible with our results. Perhaps taking Sd = (Sc)2 for
the whole function, not just its singularity, is an excessive
simplification. Clearly a better theoretical determination of
S(k) is needed. Our methods are well suited to a direct
numerical approach to this question.

We have used the tethered formalism to obtain a comprehen-
sive picture of the critical behavior of the DAFF, resolving the
inconsistencies in previous work. This method restores self-
averaging to the problem and is capable of handling rugged
free-energy landscapes to equilibrate much larger systems than
canonical parallel tempering. Our simulations show clear signs
of a second-order phase transition and are consistent both with
experiments on the DAFF and with analytical results for the
RFIM. The critical exponents θ and β/ν (equivalently, η and η̄)
are computed with a high precision, although our simulations
were not optimized for the computation of ν (equivalently, of
α). We obtain ν = 0.90(15), consistent with a positive α.

The tethered approach demonstrated in this Rapid Com-
munication has a very broad scope and we believe it can be
fruitfully applied to many systems featuring large free-energy
barriers. Indeed, it has already been successfully implemented
for hard-spheres crystallization.17 Other promising avenues
are the study of Goldstone bosons and the equation of state for
the D = 3 spin glass,18 or equilibrium and aging relaxation
in a metastable phase (e.g., to prevent crystallization of
supercooled liquids, see Ref. 19).
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