Publication:
Detectivity comparison of bolometric optical antennas

Research Projects
Organizational Units
Journal Issue
Abstract
The practical application of optical antennas in detection devices strongly depends on its ability to produce an acceptable signal-to-noise ratio for the given task. It is known that, due to the intrinsic problems arising from its sub-wavelength dimensions, optical antennas produce very small signals. The quality of these signals depends on the involved transduction mechanism. The contribution of different types of noise should be adapted to the transducer and to the signal extraction regime. Once noise is evaluated and measured, the specific detectivity, D*, becomes the parameter of interest when comparing the performance of antenna coupled devices with other detectors. However, this parameter involves some magnitudes that can be defined in several ways for optical antennas. In this contribution we are interested in the evaluation and comparison of D_ values for several bolometric optical antennas working in the infrared and involving two materials. At the same time, some material and geometrical parameters involved in the definition of noise and detectivity will be discussed to analyze the suitability of D_ to properly account for the performance of optical antennas.
Description
ISBN: 978-162841713-5 CODEN: PSISD Copyright 2015 Society of Photo Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.
Keywords
Citation
[1] Bharadwaj, P., Deutsch, B., and Novotny, L., “Optical antennas,” Adv. Opt. Photon 1, 438–483 (2009). [2] Novotny, L. and van Hulst, N., “Antennas for light,” Nature Photonics 5, 83–90 (2011). [3] Alda, J., Rico-García, J. M., López-Alonso, J. M., and Boreman, G., “Optical antennas for nano-photonic applications,” Nanotechnology 16(5), S230 (2005). [4] Puscasu, I., Schaich, W., and Boreman, G., “Resonant enhancement of emission and abosrption using frequency selective surfaces in the infrared,” Infrared Physics and Technology 43(2), 101–107 (2002). [5] Tharp, J., Lopez-Alonso, J. M., Ginn, J., Middleton, C., Lail, B., Munk, B. A., and Boreman, G., “Demonstration of a single-layer meanderline phase retarder at infrared,” Optics Letters 31(18), 2687–2689 (2006). [6] Ginn, J., Lail, B., Alda, J., and Boreman, G., “Planar infrared binary phase reflectarray,” Optics Letters 33(8), 779–781 (2008). [7] Yu, N., Genevet, P., Aieta, F., Kats, M. A., Blanchard, R., Aoust, G., Tetienne, J. P., Gaburro, Z., and Capasso, F., “Flat optics: Controlling wavefronts with optical antenna metasurfaces,” IEEE Journal of Selected Topics in Quantum Electronics 19(3), 4700423 (2013). [8] Yu, N. and Capasso, F., “Flat optics with designer metasurfaces,” Nature Materials 13, 139–150 (2014). [9] Munk, B. A., [Frequency Selective Surfaces: Theory and Design], John Wiley and Sons (2000). [10] Young, L., Robinson, L. A., and A., H. C., “Meander-line polarizer,” IEEE Transaction on Antennas and Propagation 21(3), 376–378 (1973). [11] Huang, J. and Encinar, J. A., [Reflectarrays Antennas ], John Wiley and Sons (2008). [12] Fumeaux, C., Herrmann, W., Kneub¨uhl, F. K., and Rothouizen, H., “Nanometer thin-film ni-nio-ni diodes for detection and mixing of 30 thz radiation,” Infrared Physics and Technology 39, 123–183 (1998). [13] Codreanu, I. and Boreman, G., “Integration of microbolometers with infrared microstrip antennas,” Infrared Physics and Technology 43, 334–344 (2002). [14] Briones, E., Cuadrado, A., Briones, J., de Leon, R. D., Martinez-Anton, J. C., MacMurtry, S., Hehn, M., Montaigne, F., Alda, J., and Gonzalez, F. J., “Seebeck nanoantenas for the detection and characterization of infrared radiation,” Optics Express 22(106), A1538–A1546 (2014). [15] Lopez-Alonso, J. M., Mandviwala, T., Alda, J., and Boreman, G., “Infrared antenna metrology,” in [Electrooptical and infrared systems: technology and applications II], Driggers, R., ed., 5987, 59870L1–11, SPIE (2005). [16] Gonzalez, F. J., Fumeaux, C., Alda, J., and Boreman, G. D., “Thermal-impedance model of electrostatic discharge effects on microbolometers,” Microwave and Optical Technology Letters 26, 291–293 (2000). [17] Tang, L., Kocabas, S. E., Latif, S., A., O., Ly-Gagnon, D.-S., Saraswat, K., and Miller, D., “Nanometrescale germanium photodetector enhanced by a near-infrared dipole antenna,” Nature Photonics 2, 226–229 (2008). [18] Alda, J., Fumeaux, C., Codreanu, I., Schaefer, J., and Boreman, G., “Deconvolutoin method for twodimensional spatial-response mapping of lithographic infrared antennas,” Applied Optics 38(19), 3993–4000 (1999). [19] Rico-Garc´ıa, J. M., [Herramientas para el analisis y dise˜no de antenas ´opticas ], University Complutense of Madrid. PhD Dissertation (2007). [20] Tucker, E., D’Archangel, J., Raschke, M., Briones, E., Gonzalez, F. J., and Boreman, G., “Near-field mapping of dipole nano-antenna-coupled bolometers,” Journal of Applied Physics 114, 033109 (2013). [21] Dereniak, E. and Boreman, G., [Infrared detectors and systems ], John Wiley and Sons (1996). [22] Cuadrado, A., Alda, J., and Gonzalez, F. J., “Multihpysics simulation for the optimization of optical nanoantennas working as distributed bolometers in the infrared,” Journal of Nanophotonics 7, 07093 (2013). [23] Fumeaux, C., Boreman, G., Herrmann, W., Keubuhl, F., and Rothuizen, H., “Spatial impulse response of lithographic infrared antennas,” Applied Optics 38(1), 37–46 (1999).
Collections