Publication:
Fast-timing study of the l-forbidden 1/2(+) -> 3/2(+) M1 transition in Sn-129

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2016-04-04
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Amer Physical Soc
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The levels in Sn-129 populated from the beta(-) decay of In-129 isomers were investigated at the ISOLDE facility of CERN using the newly commissioned ISOLDE Decay Station (IDS). The lowest 1/2(+) state and the 3/2(+) ground state in 129Sn are expected to have configurations dominated by the neutron s(1/2) (l = 0) and d(3/2) (l = 2) single-particle states, respectively. Consequently, these states should be connected by a somewhat slow l-forbidden M1 transition. Using fast-timing spectroscopy we havemeasured the half-life of the 1/2(+) 315.3-keV state, T-1/2 = 19(10) ps, which corresponds to a moderately fast M1 transition. Shell-model calculations using the CD-Bonn effective interaction, with standard effective charges and g factors, predict a 4-ns half-life for this level. We can reconcile the shell-model calculations to the measured T-1/2 value by the renormalization of the M1 effective operator for neutron holes.
Description
© 2016 Amer Physical Soc. We express our deep appreciation to the late Professor Henryk Mach, who was the initiator of this investigation. He was an inspiring collaborator, mentor, and leader in developing the beta gamma gamma (t) fast-timing technique. His memory and accomplishments will always be with us. This work was partially supported by the Spanish MINECO through Projects No. FPA2012-32443, No. FPA2013-41267-P, and CPAN Consolider (Project No. CSD-2007-00042), and by Romanian IFA Grant CERN/ISOLDE. It was also partly funded by the NuPNET network FATIMA (PRI-PIMNUP-2011-1338), by FWO-Vlaanderen (Belgium), by GOA/2010/010 (BOF KU Leuven), and by the Interuniversity Attraction Poles Programme initiated by the Belgian Science PolicyOffice (BriX network P7/12). Support from Grupo de Fisica Nuclear (GFN-UCM), Programmi di Ricerca Scientifica di Rilevante Interesse Nazionale (PRIN) Grant No. 2001024324 01302, German BMBF under Contracts No. 05P12PKFNE and No. 05P15PKCIA, the U.K. Science and Technology Facilities Council, and the European Union Seventh Framework through ENSAR (Contract No. 262010) is also acknowledged. Fast-timing electronics were provided by the Fast Timing Collaboration, the ISOLDE Decay Station collaboration, and MASTICON.
UCM subjects
Keywords
Citation
[1] G. S. Simpson, G. Gey, A. Jungclaus, J. Taprogge, S. Nishimura, K. Sieja, P. Doornenbal, G. Lorusso, P.-A. Söderström, T. Sumikama, Z. Y. Xu, H. Baba, F. Browne, N. Fukuda, N. Inabe, T. Isobe, H. S. Jung, D. Kameda, G. D. Kim, Y.-K. Kim, I. Kojouharov, T. Kubo, N. Kurz, Y. K. Kwon, Z. Li, H. Sakurai, H. Schaffner, Y. Shimizu, H. Suzuki, H. Takeda, Z. Vajta, H. Watanabe, J.Wu, A. Yagi, K. Yoshinaga, S. Bönig, J.-M. Daugas, F. Drouet, R. Gernhäuser, S. Ilieva, T. Kröll, A. Montaner-Pizá, K. Moschner, D. Mücher, H. Naïdja, H. Nishibata, F. Nowacki, A. Odahara, R. Orlandi, K. Steiger, and A. Wendt, Phys. Rev. Lett. 113, 132502 (2014). [2] L. Coraggio, A. Covello, A. Gargano, and N. Itaco, Phys. Rev. C 88, 041304 (2013). [3] M. G. Mayer and J. H. D. Jensen, Elementary Theory of Nuclear Shell Structure (John Wiley and Sons, New York, 1955). [4] A. Arima, H. Horie, and M. Sano, Prog. Theor. Phys. 17, 567 (1957). [5] A. Korgul, H. Mach, B. A. Brown, A. Covello, A. Gargano, B. Fogelberg, W. Kurcewicz, E. Werner-Malento, R. Orlandi, and M. Sawicka, Eur. Phys. J. A 32, 25 (2007). [6] A. Covello, L. Coraggio, A. Gargano, and N. Itaco, Prog. Part. Nucl. Phys. 59, 401 (2007). [7] L. E. De Geer and G. B. Holm, Phys. Rev. C 22, 2163 (1980). [8] H. Gausemel, B. Fogelberg, T. Engeland, M. Hjorth-Jensen, P. Hoff, H. Mach, K. A. Mezilev, and J. P. Omtvedt, Phys. Rev. C 69, 054307 (2004). [9] J. Genevey, J. A. Pinston, H. R. Faust, R. Orlandi, A. Scherillo, G. S. Simpson, I. S. Tsekhanovich, A. Covello, A. Gargano, and W. Urban, Phys. Rev. C 67, 054312 (2003). [10] U. Koster, O. Arndt, E. Bouquerel, V. N. Fedoseyev, H. Fr ¨ anberg, ˚ A. Joinet, C. Jost, I. S. K. Kerkines, R. Kirchner, and Targisol Collaboration, Nuclear Instruments and Methods in Physics Research B 266, 4229 (2008). [11] V. Vedia, H. Mach, L. M. Fraile, J. M. Ud´ıas, and S. Lalkovski, Nucl. Instrum. Methods Phys. Res., Sect. A: Accelerators, Spectrometers, Detectors and Associated Equipment 795, 144 (2015). [12] [http://www.nutaq.com]. [13] G. H. Carlson, W. L. Talbert, and J. R. McConnell, Phys. Rev. C 9, 283 (1974). [14] H. Mach and B. Fogelberg, Phys. Scr., T 56, 270 (1995). [15] H. Mach, R. L. Gill, and M. Moszynski, Nucl. Instrum. Methods Phys. Res., Sect. A: Accelerators, Spectrometers, Detectors and Associated Equipment 280, 49 (1989). [16] M. Moszynski and H. Mach, Nucl. Instrum. Methods Phys. Res., Sect. A 277 407 (1989). [17] T. Kibédi, T. W. Burrows, M. B. Trzhaskovskaya, P. M. Davidson, and C. W. Nestor Jr., Nucl. Instrum. Methods Phys. Res., Sect. A: Accelerators, Spectrometers, Detectors and Associated Equipment 589, 202 (2008). [18] L. Coraggio, A. Covello, A. Gargano, N. Itaco, and T. Kuo, Prog. Part. Nucl. Phys. 62, 135 (2009). [19] R. Machleidt, Phys. Rev. C 63, 024001 (2001). [20] M. Danchev, G. Rainovski, N. Pietralla, A. Gargano, A. Covello, C. Baktash, J. R. Beene, C. R. Bingham, A. Galindo-Uribarri, K. A. Gladnishki, C. J. Gross, V. Y. Ponomarev, D. C. Radford, L. L. Riedinger, M. Scheck, A. E. Stuchbery, J. Wambach, C.-H. Yu, and N. V. Zamfir, Phys. Rev. C 84, 061306 (2011). [21] P. J. Ellis and E. Osnes, Rev. Mod. Phys. 49, 777 (1977).
Collections